数字图像与机器视觉基础#1

2024-03-19 06:32

本文主要是介绍数字图像与机器视觉基础#1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、数字图像
    • BMP位图大小比较
    • BMP文件头
    • BMP、JPG、GIF和PNG格式大小比
  • 二、奇异值分解(SVD)
  • 三、图像的开闭运算(腐蚀-膨胀)
  • 四、图像梯度、开闭、轮廓运算识别条形码
  • 总结

一、数字图像

BMP位图大小比较

  • 用Windows自带的画图打开彩色图片,并保存不同的BMP位数。
  • 从左到右是单色位图 16色位图 256色位图 彩色位图
    在这里插入图片描述
  • 四个BMP文件的大小
    在这里插入图片描述

BMP文件头

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

BMP、JPG、GIF和PNG格式大小比

在这里插入图片描述

格式压缩比
jpg99.61%
gif139.69%
bmp856.3%

二、奇异值分解(SVD)

  • 代码
import numpy as np
import os
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib as mpl
from pprint import pprintdef restore1(sigma, u, v, K):  # 奇异值、左特征向量、右特征向量m = len(u)n = len(v[0])a = np.zeros((m, n))for k in range(K):uk = u[:, k].reshape(m, 1)vk = v[k].reshape(1, n)a += sigma[k] * np.dot(uk, vk)a[a < 0] = 0a[a > 255] = 255# a = a.clip(0, 255)return np.rint(a).astype('uint8')def restore2(sigma, u, v, K):  # 奇异值、左特征向量、右特征向量m = len(u)n = len(v[0])a = np.zeros((m, n))for k in range(K+1):for i in range(m):a[i] += sigma[k] * u[i][k] * v[k]a[a < 0] = 0a[a > 255] = 255return np.rint(a).astype('uint8')if __name__ == "__main__":A = Image.open("./lena.png", 'r')print(A)output_path = r'./SVD_Output'if not os.path.exists(output_path):os.mkdir(output_path)a = np.array(A)print(a.shape)K = 50u_r, sigma_r, v_r = np.linalg.svd(a[:, :, 0])u_g, sigma_g, v_g = np.linalg.svd(a[:, :, 1])u_b, sigma_b, v_b = np.linalg.svd(a[:, :, 2])plt.figure(figsize=(11, 9), facecolor='w')mpl.rcParams['font.sans-serif'] = ['simHei']mpl.rcParams['axes.unicode_minus'] = Falsefor k in range(1, K+1):print(k)R = restore1(sigma_r, u_r, v_r, k)G = restore1(sigma_g, u_g, v_g, k)B = restore1(sigma_b, u_b, v_b, k)I = np.stack((R, G, B), axis=2)Image.fromarray(I).save('%s\\svd_%d.png' % (output_path, k))if k <= 12:plt.subplot(3, 4, k)plt.imshow(I)plt.axis('off')plt.title('奇异值个数:%d' % k)plt.suptitle('SVD与图像分解', fontsize=20)plt.tight_layout(0.3, rect=(0, 0, 1, 0.92))# plt.subplots_adjust(top=0.9)plt.show()
  • 打开文件夹,可见奇异值越少越模糊
    在这里插入图片描述

三、图像的开闭运算(腐蚀-膨胀)

  • 图像开运算是图像依次经过腐蚀、膨胀处理后的过程。图像被腐蚀后,去除了噪声,但是也压缩了图像;接着对腐蚀过的图像进行膨胀处理,可以去除噪声,并保留原有图像。
  • 图像闭运算是图像依次经过膨胀、腐蚀处理后的过程。图像先膨胀,后腐蚀,它有助于关闭前景物体内部的小孔,或物体上的小黑点。
# -*- coding: utf-8 -*-
import cv2
import numpy as npdef stackImages(scale, imgArray):rows = len(imgArray)cols = len(imgArray[0])rowsAvailable = isinstance(imgArray[0], list)width = imgArray[0][0].shape[1]height = imgArray[0][0].shape[0]if rowsAvailable:for x in range(0, rows):for y in range(0, cols):if imgArray[x][y].shape[:2] == imgArray[0][0].shape[:2]:imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)else:imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]),None, scale, scale)if len(imgArray[x][y].shape) == 2: imgArray[x][y] = cv2.cvtColor(imgArray[x][y], cv2.COLOR_GRAY2BGR)imageBlank = np.zeros((height, width, 3), np.uint8)hor = [imageBlank] * rowshor_con = [imageBlank] * rowsfor x in range(0, rows):hor[x] = np.hstack(imgArray[x])ver = np.vstack(hor)else:for x in range(0, rows):if imgArray[x].shape[:2] == imgArray[0].shape[:2]:imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)else:imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None, scale, scale)if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)hor = np.hstack(imgArray)ver = horreturn ver#读取图片
src = cv2.imread("coin.png")
img = src.copy()#灰度
img_1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#二值化
ret, img_2 = cv2.threshold(img_1, 127, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)#腐蚀
kernel = np.ones((20, 20), int)
img_3 = cv2.erode(img_2, kernel, iterations=1)#膨胀
kernel = np.ones((3, 3), int)
img_4 = cv2.dilate(img_3, kernel, iterations=1)#找到硬币中心
contours, hierarchy = cv2.findContours(img_4, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2:]#标识硬币
cv2.drawContours(img, contours, -1, (0, 0, 255), 5)#显示图片
cv2.putText(img, "count:{}".format(len(contours)), (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 3)
cv2.putText(src, "src", (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 3)
cv2.putText(img_1, "gray", (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 3)
cv2.putText(img_2, "thresh", (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 3)
cv2.putText(img_3, "erode", (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 3)
cv2.putText(img_4, "dilate", (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 3)
imgStack = stackImages(1, ([src, img_1, img_2], [img_3, img_4, img]))
cv2.imshow("imgStack", imgStack)
cv2.waitKey(0)
  • 硬币

在这里插入图片描述

  • 细胞
    在这里插入图片描述

四、图像梯度、开闭、轮廓运算识别条形码

  • 代码

import cv2
import numpy as np
import imutils
from pyzbar import pyzbar
def stackImages(scale, imgArray):rows = len(imgArray)cols = len(imgArray[0])rowsAvailable = isinstance(imgArray[0], list)width = imgArray[0][0].shape[1]height = imgArray[0][0].shape[0]if rowsAvailable:for x in range(0, rows):for y in range(0, cols):if imgArray[x][y].shape[:2] == imgArray[0][0].shape[:2]:imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)else:imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]),None, scale, scale)if len(imgArray[x][y].shape) == 2: imgArray[x][y] = cv2.cvtColor(imgArray[x][y], cv2.COLOR_GRAY2BGR)imageBlank = np.zeros((height, width, 3), np.uint8)hor = [imageBlank] * rowshor_con = [imageBlank] * rowsfor x in range(0, rows):hor[x] = np.hstack(imgArray[x])ver = np.vstack(hor)else:for x in range(0, rows):if imgArray[x].shape[:2] == imgArray[0].shape[:2]:imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)else:imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None, scale, scale)if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)hor = np.hstack(imgArray)ver = horreturn ver#读取图片
src = cv2.imread("txm.jpg")
img = src.copy()#灰度
img_1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#高斯滤波
img_2 = cv2.GaussianBlur(img_1, (5, 5), 1)#Sobel算子
sobel_x = cv2.Sobel(img_2, cv2.CV_64F, 1, 0, ksize=3)
sobel_y = cv2.Sobel(img_2, cv2.CV_64F, 0, 1, ksize=3)
sobel_x = cv2.convertScaleAbs(sobel_x)
sobel_y = cv2.convertScaleAbs(sobel_y)
img_3 = cv2.addWeighted(sobel_x, 0.5, sobel_y, 0.5, 0)#均值方波
img_4 = cv2.blur(img_3, (5, 5))#二值化
ret, img_5 = cv2.threshold(img_4, 127, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)#闭运算
kernel = np.ones((100, 100), int)
img_6 = cv2.morphologyEx(img_5, cv2.MORPH_CLOSE, kernel)#开运算
kernel = np.ones((200, 200), int)
img_7 = cv2.morphologyEx(img_6, cv2.MORPH_OPEN, kernel)#绘制条形码区域
contours = cv2.findContours(img_7, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = imutils.grab_contours(contours)
c = sorted(contours, key = cv2.contourArea, reverse = True)[0]
rect = cv2.minAreaRect(c)
box = cv2.cv.BoxPoints(rect) if imutils.is_cv2() else cv2.boxPoints(rect)
box = np.int0(box)
cv2.drawContours(img, [box], -1, (0,255,0), 20)#显示图片信息
cv2.putText(img, "results", (200, 200), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 3)
cv2.putText(img_1, "gray", (200, 200), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 3)
cv2.putText(img_2, "GaussianBlur",(200, 200), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 3)
cv2.putText(img_3, "Sobel", (200, 200), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 3)
cv2.putText(img_4, "blur", (200, 200), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 3)
cv2.putText(img_5, "threshold", (200, 200), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 3)
cv2.putText(img_6, "close", (200, 200), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 3)
cv2.putText(img_7, "open", (200, 200), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 3)#输出条形码
barcodes = pyzbar.decode(src)
for barcode in barcodes:barcodeData = barcode.data.decode("utf-8")cv2.putText(img, barcodeData, (200, 600), cv2.FONT_HERSHEY_SIMPLEX, 5.0, (0, 255, 0), 30)#显示所有图片
imgStack = stackImages(0.8, ([img_1, img_2],[img_3,img_4],[img_5,img_6],[img_7,img]))
cv2.imshow("imgStack", imgStack)
cv2.waitKey(0)

在这里插入图片描述

总结

  • 图像开运算与闭运算与膨胀和腐蚀运算有关,由膨胀和腐蚀两个运算的复合与集合操作(并、交、补等)组合成的运算构成。开运算与闭运算可以处理很多类型的图像问题,应用方面也很多种。

这篇关于数字图像与机器视觉基础#1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/825092

相关文章

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou

【机器学习】高斯网络的基本概念和应用领域

引言 高斯网络(Gaussian Network)通常指的是一个概率图模型,其中所有的随机变量(或节点)都遵循高斯分布 文章目录 引言一、高斯网络(Gaussian Network)1.1 高斯过程(Gaussian Process)1.2 高斯混合模型(Gaussian Mixture Model)1.3 应用1.4 总结 二、高斯网络的应用2.1 机器学习2.2 统计学2.3