【人工智能】英文学习材料03(每日一句)

2024-03-19 02:44

本文主要是介绍【人工智能】英文学习材料03(每日一句),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🌻个人主页:相洋同学
🥇学习在于行动、总结和坚持,共勉!

 目录

Chain Rule (链式法则)

Dimensionality Reduction (降维)

Long Short-Term Memory (LSTM) (长短期记忆网络)

Gradient Explosion (梯度爆炸)

Gradient Vanishing (梯度消失)

Dropout (Dropout)

Seq2Seq (Seq2Seq)

One-Hot Encoding (One-Hot 编码)

Self-Attention Mechanism (自注意力机制)

Multi-Head Attention Mechanism (多头注意力机制)


Chain Rule (链式法则)

The Chain Rule is a fundamental principle in calculus used to compute the derivative of a composite function. It states that if you have two functions, where one function is applied to the result of another function, the derivative of the composite function is the derivative of the outer function multiplied by the derivative of the inner function.

  • fundamental(基本的、根本的)
  • calculus (微积分)
  • derivative (导数)
  • composite function (复合函数)
  • function (函数)
  • multiplied (乘以)

Dimensionality Reduction (降维)

Dimensionality Reduction refers to the process of reducing the number of random variables under consideration by obtaining a set of principal variables. It's often used in the field of machine learning and statistics to simplify models, improve speed, and reduce noise in data.

  • refers to(概念、指的是)
  • random variables (随机变量)
  • principal variables (主要变量)
  • statistics (统计学)
  • simplify (简化)

Long Short-Term Memory (LSTM) (长短期记忆网络)

Long Short-Term Memory networks, or LSTMs, are a special kind of Recurrent Neural Network (RNN) capable of learning long-term dependencies. LSTMs are designed to avoid the long-term dependency problem, allowing them to remember information for long periods.

  • long-term dependencies (长期依赖)
  • long-term dependency problem (长期依赖问题)
  • periods (周期)

Gradient Explosion (梯度爆炸)

Gradient Explosion refers to a problem in training deep neural networks where gradients of the network's loss function become too large, causing updates to the network's weights to be so large that they overshoot the optimal values, leading to an unstable training process and divergence.

  • overshoot (超过)
  • optimal values (最优值)
  • unstable (不稳定)
  • divergence (发散)

Gradient Vanishing (梯度消失)

Gradient Vanishing is a problem encountered in training deep neural networks, where the gradients of the network's loss function become too small, significantly slowing down the training process or stopping it altogether, as the network weights fail to update in a meaningful way.

  • encountered (遇到)
  • significantly (显著地)
  • altogether (完全)
  • meaningful way (有意义的方式)

Dropout (Dropout)

Dropout is a regularization technique used in training neural networks to prevent overfitting. By randomly omitting a subset of neurons during the training process, dropout forces the network to learn more robust features that are not dependent on any single set of neurons.

  • regularization technique (正则化技术)
  • prevent (防止)
  • omitting (省略)
  • subset (子集)
  • robust features (健壮的特征)
  • dependent (依赖)
  • single set (单一集合)

Seq2Seq (Seq2Seq)

Seq2Seq, or Sequence to Sequence, is a model used in machine learning that transforms a given sequence of elements, such as words in a sentence, into another sequence. This model is widely used in tasks like machine translation, where an input sentence in one language is converted into an output sentence in another language.

  • Sequence to Sequence (序列到序列)
  • transforms (转换)
  • sequence (序列)
  • elements (元素)
  • converted into(将某物变换或转换成)

One-Hot Encoding (One-Hot 编码)

One-Hot Encoding is a process where categorical variables are converted into a form that could be provided to ML algorithms to do a better job in prediction. It represents each category with a vector that has one element set to 1 and all other elements set to 0.

  • categorical variables (类别变量)
  • converted (转换)
  • ML algorithms (机器学习算法)
  • represents (表示)
  • category (类别)
  • element (元素)

Self-Attention Mechanism (自注意力机制)

The Self-Attention Mechanism allows a model to weigh the importance of different parts of the input data differently. It is an essential component of Transformer models, enabling them to dynamically prioritize which parts of the input to focus on as they process data.

  • weigh (权衡)
  • essential component (重要组成部分)
  • dynamically (动态地)
  • prioritize (优先考虑)
  • process data (处理数据)

Multi-Head Attention Mechanism (多头注意力机制)

The Multi-Head Attention Mechanism is a technique used in Transformer models that allows the model to attend to information from different representation subspaces at different positions. It performs multiple self-attention operations in parallel, enhancing the model's ability to focus on various aspects of the input data simultaneously.

  • attend to (关注)
  • representation subspaces (表示子空间)
  • positions (位置)
  • performs (执行)
  • self-attention operations (自注意力操作)
  • parallel (并行)
  • enhancing (增强)
  • various aspects (各个方面)
  • simultaneously (同时)

以上

君子坐而论道,少年起而行之,共勉

这篇关于【人工智能】英文学习材料03(每日一句)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/824531

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个?

跨平台系列 cross-plateform 跨平台应用程序-01-概览 cross-plateform 跨平台应用程序-02-有哪些主流技术栈? cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个? cross-plateform 跨平台应用程序-04-React Native 介绍 cross-plateform 跨平台应用程序-05-Flutte

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟)

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟) 题目描述 给定一个链表,链表中的每个节点代表一个整数。链表中的整数由 0 分隔开,表示不同的区间。链表的开始和结束节点的值都为 0。任务是将每两个相邻的 0 之间的所有节点合并成一个节点,新节点的值为原区间内所有节点值的和。合并后,需要移除所有的 0,并返回修改后的链表头节点。 思路分析 初始化:创建一个虚拟头节点

每日一题|牛客竞赛|四舍五入|字符串+贪心+模拟

每日一题|四舍五入 四舍五入 心有猛虎,细嗅蔷薇。你好朋友,这里是锅巴的C\C++学习笔记,常言道,不积跬步无以至千里,希望有朝一日我们积累的滴水可以击穿顽石。 四舍五入 题目: 牛牛发明了一种新的四舍五入应用于整数,对个位四舍五入,规则如下 12345->12350 12399->12400 输入描述: 输入一个整数n(0<=n<=109 ) 输出描述: 输出一个整数

FreeRTOS内部机制学习03(事件组内部机制)

文章目录 事件组使用的场景事件组的核心以及Set事件API做的事情事件组的特殊之处事件组为什么不关闭中断xEventGroupSetBitsFromISR内部是怎么做的? 事件组使用的场景 学校组织秋游,组长在等待: 张三:我到了 李四:我到了 王五:我到了 组长说:好,大家都到齐了,出发! 秋游回来第二天就要提交一篇心得报告,组长在焦急等待:张三、李四、王五谁先写好就交谁的

基于人工智能的智能家居语音控制系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 随着物联网(IoT)和人工智能技术的发展,智能家居语音控制系统已经成为现代家庭的一部分。通过语音控制设备,用户可以轻松实现对灯光、空调、门锁等家电的控制,提升生活的便捷性和舒适性。本文将介绍如何构建一个基于人工智能的智能家居语音控制系统,包括环境准备

每日一练7:简写单词(含链接)

1.链接 简写单词_牛客题霸_牛客网 2.题目 3.代码1(错误经验) #include <iostream>#include <string>using namespace std;int main() {string s;string ret;int count = 0;while(cin >> s)for(auto a : s){if(count == 0){if( a <=

【每日刷题】Day113

【每日刷题】Day113 🥕个人主页:开敲🍉 🔥所属专栏:每日刷题🍍 🌼文章目录🌼 1. 91. 解码方法 - 力扣(LeetCode) 2. LCR 098. 不同路径 - 力扣(LeetCode) 3. 63. 不同路径 II - 力扣(LeetCode) 1. 91. 解码方法 - 力扣(LeetCode) //思路:动态规划。 cl

从希腊神话到好莱坞大片,人工智能的七大历史时期值得铭记

本文选自historyextra,机器之心编译出品,参与成员:Angulia、小樱、柒柒、孟婷 你可能听过「技术奇点」,即本世纪某个阶段将出现超级智能,那时,技术将会以人类难以想象的速度飞速发展。同样,黑洞也是一个奇点,在其上任何物理定律都不适用;因此,技术奇点也是超越未来理解范围的一点。 然而,在我们到达那个奇点之前(假设我们能到达),还存在另一个极大的不连续问题,我将它称之

[Day 73] 區塊鏈與人工智能的聯動應用:理論、技術與實踐

AI在健康管理中的應用實例 1. 引言 隨著健康管理需求的提升,人工智能(AI)在該領域的應用越來越普遍。AI可以幫助醫療機構提升效率、精準診斷疾病、個性化治療方案,以及進行健康數據分析,從而改善病患的健康狀況。這篇文章將探討AI如何應用於健康管理,並通過具體代碼示例說明其技術實現。 2. AI在健康管理中的主要應用場景 個性化健康建議:通過分析用戶的健康數據,如飲食、運動、睡眠等,AI可