氪信团队再夺冠!易观数科第四届OLAP算法大赛前三甲诞生!

本文主要是介绍氪信团队再夺冠!易观数科第四届OLAP算法大赛前三甲诞生!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

10月24日,易观数科第四届OLAP算法大赛正式落下帷幕,本届大赛由UCloud赞助、思否、infoQ、CSDN等技术媒体提供支持。历时40多天,经历了大赛报名、测试体验、正式比赛等重重环节,氪信团队、火山酱油团队、谦谦团队脱颖而出,夺得前三甲,奖励分别为6万、3万、1万现金大奖。授奖仪式在10月24日的2020易观A10数据智能峰会开发者日上进行,易观CTO郭炜为获奖者颁奖。

算法大赛前三甲合照

随后,冠军团队——氪信团队进行了比赛分享。氪信团队去年就曾以300毫秒准确处理8亿条行为数据的成绩夺得了易观第三届OLAP算法大赛冠军,今年面对不一样的题目和规则,毫不示弱,再度折冠!

算法大赛冠军团队-氪信团队

以下为冠军团队在易观A10数据智能峰会上的分享:

赛题解读

今年的赛题,相当于提供了一个APP用户运营的场景,原始数据为十亿量级的用户行为数据,比如某个用户访问了AI,做了一个行为比如查看一件商品、购买等,而平台有5000万的用户数据,这也就意味要将用户属性、用户分群关联到数十亿事件的序列上面,这其实是一个在相对有限的机器环境下有挑战的问题。

而正式比赛时使用的三台8C16G的机器,要把查询任务做到几秒甚至几百毫秒,这其实就是算法本身的一个重大挑战。

本届赛事难点

本届算法大赛,选手虽然提前3天拿到服务器和正式比赛数据,看起来有较富裕的预处理时间。但在比赛前15分钟,选手们会收到100多万的增量数据,时间短到不足以对全量数据做预计算、建cube。

第四届OLAP算法大赛以事件分析为主题,题目要求进行event表和profile表的关联,两个表之间数据量对比为1000000000 VS 50000000,join开销过大。此外,题目还考察参赛者计算去重小计数、中位数等指标的分布式计算方法,较为复杂。

解题思路与技巧

氪信团队选取了ClickHouse + 氪信准实时分析平台来完成本次比赛,基于用户ID和日期分别建立分片,然后根据题目类型自行选择合适的分片来执行计算。采用了列存+低基数(low cardinality)优化+数据压缩的存储方案,计算方案上则采用零共享MPP+CPU指令集优化+数据加热的方式。

在这里插入图片描述

10亿条对5000万条的关联,如果我们称之为相对较大的join,那么在三台配置较低的机器下,内存和硬盘的使用都要非常谨慎。氪信团队的解决方案是:

首先,通过离线任务的方式,将历史数据整合成大宽表,并将未能成功关联的event 表数据抽离出来;

随后,在获取到100万条event、5万条profile的增量数据后,将增量event 与未关联的历史event数据、全量profile做关联,这样需要join的数据仅为数百万对5000w条数据关联,大大降低了内存压力;

最后,做多维查询时,仅需要对预处理好的单表进行操作,而这正是clickhouse擅长的工作。

在这里插入图片描述

经验分享

比赛时究竟是追求极致的速度、还是灵活性/回退能力?氪信团队在分享中提到,LZ4的解压性能是主要瓶颈;在计算小计/总计时,浪费了一次完成的扫描过程,可以用-Resample 组合并扫描;通过预排序/预分组则可以节省去重计数的开销。

随着颁奖仪式的结束,易观第四届OLAP算法大赛至此圆满收官。自8月份开启选手报名通道以来,收到了来自爱奇艺、哔哩哔哩、中国移动、中科院计算所、中南大学等超百家团队的报名。除了冠军团队在会上的分享,亚军酱油团队、季军谦谦团队也分别提交了答辩PPT,前三甲的源代码也都将开源出来供爱好者浏览学习。

可前往算法大赛官网查看:
http://ds.analysys.cn/portal/2020-index.html

作为国内OLAP算法领域内的重要赛事,易观近四年来的坚持旨在推动国内OLAP技术的交流,荟聚算法智慧,为推动数据计算和应用能力、践行数据能力平民化而努力。期待明年有更多团队加入算法大赛!

这篇关于氪信团队再夺冠!易观数科第四届OLAP算法大赛前三甲诞生!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/823687

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯: