本文主要是介绍mapred-site.xml里面配置运行日志的输出目录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
用hadoop也算有一段时间了,一直没有注意过hadoop运行过程中,产生的数据日志,比如说System打印的日志,或者是log4j,slf4j等记录的日志,存放在哪里,日志信息的重要性,在这里散仙就不用多说了,调试任何程序基本上都得需要分析日志。
hadoop的日志主要是MapReduce程序,运行过程中,产生的一些数据日志,除了系统的日志外,还包含一些我们自己在测试时候,或者线上环境输出的日志,这部分日志通常会被放在userlogs这个文件夹下面,我们可以在mapred-site.xml里面配置运行日志的输出目录,散仙测试文件内容如下:
- <?xml version="1.0"?>
- <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
- <!-- Put site-specific property overrides in this file. -->
- <configuration>
- <!-- jobtracker的master地址-->
- <property>
- <name>mapred.job.tracker</name>
- <value>192.168.75.130:9001</value>
- </property>
- <property>
- <!-- hadoop的日志输出指定目录-->
- <name>mapred.local.dir</name>
- <value>/root/hadoop1.2/mylogs</value>
- </property>
- </configuration>
<?xml version="1.0"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl"?><!-- Put site-specific property overrides in this file. --><configuration> <!-- jobtracker的master地址--> <property> <name>mapred.job.tracker</name> <value>192.168.75.130:9001</value> </property> <property> <!-- hadoop的日志输出指定目录--> <name>mapred.local.dir</name> <value>/root/hadoop1.2/mylogs</value> </property> </configuration>
配置好,日志目录后,我们就可以把这个配置文件,分发到各个节点上,然后启动hadoop。
下面我们看来下在eclipse环境中如何调试,散仙在setup,map和reduce方法中,分别使用System打印了一些数据,当我们使用local方式跑MR程序时候,日志并不会被记录下来,而是直接会在控制台打印,散仙的测试代码如下:
- package com.qin.testdistributed;
- import java.io.File;
- import java.io.FileReader;
- import java.io.IOException;
- import java.net.URI;
- import java.util.Scanner;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.filecache.DistributedCache;
- import org.apache.hadoop.fs.FSDataInputStream;
- import org.apache.hadoop.fs.FileSystem;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.LongWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapred.JobConf;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.Reducer;
- import org.apache.hadoop.mapreduce.lib.db.DBConfiguration;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- import org.apache.log4j.pattern.LogEvent;
- import org.slf4j.Logger;
- import org.slf4j.LoggerFactory;
- import com.qin.operadb.WriteMapDB;
- /**
- * 测试hadoop的全局共享文件
- * 使用DistributedCached
- *
- * 大数据技术交流群: 37693216
- * @author qindongliang
- *
- * ***/
- public class TestDistributed {
- private static Logger logger=LoggerFactory.getLogger(TestDistributed.class);
- private static class FileMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
- Path path[]=null;
- /**
- * Map函数前调用
- *
- * */
- @Override
- protected void setup(Context context)
- throws IOException, InterruptedException {
- logger.info("开始启动setup了哈哈哈哈");
- // System.out.println("运行了.........");
- Configuration conf=context.getConfiguration();
- path=DistributedCache.getLocalCacheFiles(conf);
- System.out.println("获取的路径是: "+path[0].toString());
- // FileSystem fs = FileSystem.get(conf);
- FileSystem fsopen= FileSystem.getLocal(conf);
- // FSDataInputStream in = fsopen.open(path[0]);
- // System.out.println(in.readLine());
- // for(Path tmpRefPath : path) {
- // if(tmpRefPath.toString().indexOf("ref.png") != -1) {
- // in = reffs.open(tmpRefPath);
- // break;
- // }
- // }
- // FileReader reader=new FileReader("file://"+path[0].toString());
- // File f=new File("file://"+path[0].toString());
- // FSDataInputStream in=fs.open(new Path(path[0].toString()));
- // Scanner scan=new Scanner(in);
- // while(scan.hasNext()){
- // System.out.println(Thread.currentThread().getName()+"扫描的内容: "+scan.next());
- // }
- // scan.close();
- //
- // System.out.println("size: "+path.length);
- }
- @Override
- protected void map(LongWritable key, Text value,Context context)
- throws IOException, InterruptedException {
- // System.out.println("map aaa");
- //logger.info("Map里的任务");
- System.out.println("map里输出了");
- // logger.info();
- context.write(new Text(""), new IntWritable(0));
- }
- @Override
- protected void cleanup(Context context)
- throws IOException, InterruptedException {
- logger.info("清空任务了。。。。。。");
- }
- }
- private static class FileReduce extends Reducer<Object, Object, Object, Object>{
- @Override
- protected void reduce(Object arg0, Iterable<Object> arg1,
- Context arg2)throws IOException, InterruptedException {
- System.out.println("我是reduce里面的东西");
- }
- }
- public static void main(String[] args)throws Exception {
- JobConf conf=new JobConf(TestDistributed.class);
- //conf.set("mapred.local.dir", "/root/hadoop");
- //Configuration conf=new Configuration();
- // conf.set("mapred.job.tracker","192.168.75.130:9001");
- //读取person中的数据字段
- //conf.setJar("tt.jar");
- //注意这行代码放在最前面,进行初始化,否则会报
- String inputPath="hdfs://192.168.75.130:9000/root/input";
- String outputPath="hdfs://192.168.75.130:9000/root/outputsort";
- Job job=new Job(conf, "a");
- DistributedCache.addCacheFile(new URI("hdfs://192.168.75.130:9000/root/input/f1.txt"), job.getConfiguration());
- job.setJarByClass(TestDistributed.class);
- System.out.println("运行模式: "+conf.get("mapred.job.tracker"));
- /**设置输出表的的信息 第一个参数是job任务,第二个参数是表名,第三个参数字段项**/
- FileSystem fs=FileSystem.get(job.getConfiguration());
- Path pout=new Path(outputPath);
- if(fs.exists(pout)){
- fs.delete(pout, true);
- System.out.println("存在此路径, 已经删除......");
- }
- /**设置Map类**/
- // job.setOutputKeyClass(Text.class);
- //job.setOutputKeyClass(IntWritable.class);
- job.setMapOutputKeyClass(Text.class);
- job.setMapOutputValueClass(IntWritable.class);
- job.setMapperClass(FileMapper.class);
- job.setReducerClass(FileReduce.class);
- FileInputFormat.setInputPaths(job, new Path(inputPath)); //输入路径
- FileOutputFormat.setOutputPath(job, new Path(outputPath));//输出路径
- System.exit(job.waitForCompletion(true) ? 0 : 1);
- }
- }
package com.qin.testdistributed;import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.Scanner;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.db.DBConfiguration;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.log4j.pattern.LogEvent;import org.slf4j.Logger;
import org.slf4j.LoggerFactory;import com.qin.operadb.WriteMapDB;/*** 测试hadoop的全局共享文件* 使用DistributedCached* * 大数据技术交流群: 37693216* @author qindongliang* * ***/
public class TestDistributed {private static Logger logger=LoggerFactory.getLogger(TestDistributed.class);private static class FileMapper extends Mapper<LongWritable, Text, Text, IntWritable>{Path path[]=null;/*** Map函数前调用* * */@Overrideprotected void setup(Context context)throws IOException, InterruptedException {logger.info("开始启动setup了哈哈哈哈");// System.out.println("运行了.........");Configuration conf=context.getConfiguration();path=DistributedCache.getLocalCacheFiles(conf);System.out.println("获取的路径是: "+path[0].toString());// FileSystem fs = FileSystem.get(conf);FileSystem fsopen= FileSystem.getLocal(conf);// FSDataInputStream in = fsopen.open(path[0]);// System.out.println(in.readLine());
// for(Path tmpRefPath : path) {
// if(tmpRefPath.toString().indexOf("ref.png") != -1) {
// in = reffs.open(tmpRefPath);
// break;
// }
// }// FileReader reader=new FileReader("file://"+path[0].toString());
// File f=new File("file://"+path[0].toString());// FSDataInputStream in=fs.open(new Path(path[0].toString()));
// Scanner scan=new Scanner(in);
// while(scan.hasNext()){
// System.out.println(Thread.currentThread().getName()+"扫描的内容: "+scan.next());
// }
// scan.close();
// // System.out.println("size: "+path.length);}@Overrideprotected void map(LongWritable key, Text value,Context context)throws IOException, InterruptedException {// System.out.println("map aaa");//logger.info("Map里的任务");System.out.println("map里输出了");// logger.info();context.write(new Text(""), new IntWritable(0));}@Overrideprotected void cleanup(Context context)throws IOException, InterruptedException {logger.info("清空任务了。。。。。。");}}private static class FileReduce extends Reducer<Object, Object, Object, Object>{@Overrideprotected void reduce(Object arg0, Iterable<Object> arg1,Context arg2)throws IOException, InterruptedException {System.out.println("我是reduce里面的东西");}}public static void main(String[] args)throws Exception {JobConf conf=new JobConf(TestDistributed.class);//conf.set("mapred.local.dir", "/root/hadoop");//Configuration conf=new Configuration();// conf.set("mapred.job.tracker","192.168.75.130:9001");//读取person中的数据字段//conf.setJar("tt.jar");//注意这行代码放在最前面,进行初始化,否则会报String inputPath="hdfs://192.168.75.130:9000/root/input"; String outputPath="hdfs://192.168.75.130:9000/root/outputsort";Job job=new Job(conf, "a");DistributedCache.addCacheFile(new URI("hdfs://192.168.75.130:9000/root/input/f1.txt"), job.getConfiguration());job.setJarByClass(TestDistributed.class);System.out.println("运行模式: "+conf.get("mapred.job.tracker"));/**设置输出表的的信息 第一个参数是job任务,第二个参数是表名,第三个参数字段项**/FileSystem fs=FileSystem.get(job.getConfiguration());Path pout=new Path(outputPath);if(fs.exists(pout)){fs.delete(pout, true);System.out.println("存在此路径, 已经删除......");} /**设置Map类**/// job.setOutputKeyClass(Text.class);//job.setOutputKeyClass(IntWritable.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);job.setMapperClass(FileMapper.class);job.setReducerClass(FileReduce.class);FileInputFormat.setInputPaths(job, new Path(inputPath)); //输入路径FileOutputFormat.setOutputPath(job, new Path(outputPath));//输出路径 System.exit(job.waitForCompletion(true) ? 0 : 1); }}
Local模式下输出如下:
- 运行模式: local
- 存在此路径, 已经删除......
- WARN - NativeCodeLoader.<clinit>(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
- WARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
- WARN - JobClient.copyAndConfigureFiles(870) | No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
- INFO - FileInputFormat.listStatus(237) | Total input paths to process : 1
- WARN - LoadSnappy.<clinit>(46) | Snappy native library not loaded
- INFO - TrackerDistributedCacheManager.downloadCacheObject(423) | Creating f1.txt in /root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input-work-186410214545932656 with rwxr-xr-x
- INFO - TrackerDistributedCacheManager.downloadCacheObject(463) | Cached hdfs://192.168.75.130:9000/root/input/f1.txt as /root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input/f1.txt
- INFO - TrackerDistributedCacheManager.localizePublicCacheObject(486) | Cached hdfs://192.168.75.130:9000/root/input/f1.txt as /root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input/f1.txt
- INFO - JobClient.monitorAndPrintJob(1380) | Running job: job_local479869714_0001
- INFO - LocalJobRunner$Job.run(340) | Waiting for map tasks
- INFO - LocalJobRunner$Job$MapTaskRunnable.run(204) | Starting task: attempt_local479869714_0001_m_000000_0
- INFO - Task.initialize(534) | Using ResourceCalculatorPlugin : null
- INFO - MapTask.runNewMapper(729) | Processing split: hdfs://192.168.75.130:9000/root/input/f1.txt:0+31
- INFO - MapTask$MapOutputBuffer.<init>(949) | io.sort.mb = 100
- INFO - MapTask$MapOutputBuffer.<init>(961) | data buffer = 79691776/99614720
- INFO - MapTask$MapOutputBuffer.<init>(962) | record buffer = 262144/327680
- INFO - TestDistributed$FileMapper.setup(57) | 开始启动setup了哈哈哈哈
- 获取的路径是: /root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input/f1.txt
- map里输出了
- map里输出了
- INFO - TestDistributed$FileMapper.cleanup(107) | 清空任务了。。。。。。
- INFO - MapTask$MapOutputBuffer.flush(1289) | Starting flush of map output
- INFO - MapTask$MapOutputBuffer.sortAndSpill(1471) | Finished spill 0
- INFO - Task.done(858) | Task:attempt_local479869714_0001_m_000000_0 is done. And is in the process of commiting
- INFO - LocalJobRunner$Job.statusUpdate(466) |
- INFO - Task.sendDone(970) | Task 'attempt_local479869714_0001_m_000000_0' done.
- INFO - LocalJobRunner$Job$MapTaskRunnable.run(229) | Finishing task: attempt_local479869714_0001_m_000000_0
- INFO - LocalJobRunner$Job.run(348) | Map task executor complete.
- INFO - Task.initialize(534) | Using ResourceCalculatorPlugin : null
- INFO - LocalJobRunner$Job.statusUpdate(466) |
- INFO - Merger$MergeQueue.merge(408) | Merging 1 sorted segments
- INFO - Merger$MergeQueue.merge(491) | Down to the last merge-pass, with 1 segments left of total size: 16 bytes
- INFO - LocalJobRunner$Job.statusUpdate(466) |
- 我是reduce里面的东西
- INFO - Task.done(858) | Task:attempt_local479869714_0001_r_000000_0 is done. And is in the process of commiting
- INFO - LocalJobRunner$Job.statusUpdate(466) |
- INFO - Task.commit(1011) | Task attempt_local479869714_0001_r_000000_0 is allowed to commit now
- INFO - FileOutputCommitter.commitTask(173) | Saved output of task 'attempt_local479869714_0001_r_000000_0' to hdfs://192.168.75.130:9000/root/outputsort
- INFO - LocalJobRunner$Job.statusUpdate(466) | reduce > reduce
- INFO - Task.sendDone(970) | Task 'attempt_local479869714_0001_r_000000_0' done.
- INFO - JobClient.monitorAndPrintJob(1393) | map 100% reduce 100%
- INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_local479869714_0001
- INFO - Counters.log(585) | Counters: 18
- INFO - Counters.log(587) | File Output Format Counters
- INFO - Counters.log(589) | Bytes Written=0
- INFO - Counters.log(587) | File Input Format Counters
- INFO - Counters.log(589) | Bytes Read=31
- INFO - Counters.log(587) | FileSystemCounters
- INFO - Counters.log(589) | FILE_BYTES_READ=454
- INFO - Counters.log(589) | HDFS_BYTES_READ=124
- INFO - Counters.log(589) | FILE_BYTES_WRITTEN=138372
- INFO - Counters.log(587) | Map-Reduce Framework
- INFO - Counters.log(589) | Map output materialized bytes=20
- INFO - Counters.log(589) | Map input records=2
- INFO - Counters.log(589) | Reduce shuffle bytes=0
- INFO - Counters.log(589) | Spilled Records=4
- INFO - Counters.log(589) | Map output bytes=10
- INFO - Counters.log(589) | Total committed heap usage (bytes)=455475200
- INFO - Counters.log(589) | Combine input records=0
- INFO - Counters.log(589) | SPLIT_RAW_BYTES=109
- INFO - Counters.log(589) | Reduce input records=2
- INFO - Counters.log(589) | Reduce input groups=1
- INFO - Counters.log(589) | Combine output records=0
- INFO - Counters.log(589) | Reduce output records=0
- INFO - Counters.log(589) | Map output records=2
运行模式: local
存在此路径, 已经删除......
WARN - NativeCodeLoader.<clinit>(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
WARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
WARN - JobClient.copyAndConfigureFiles(870) | No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
INFO - FileInputFormat.listStatus(237) | Total input paths to process : 1
WARN - LoadSnappy.<clinit>(46) | Snappy native library not loaded
INFO - TrackerDistributedCacheManager.downloadCacheObject(423) | Creating f1.txt in /root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input-work-186410214545932656 with rwxr-xr-x
INFO - TrackerDistributedCacheManager.downloadCacheObject(463) | Cached hdfs://192.168.75.130:9000/root/input/f1.txt as /root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input/f1.txt
INFO - TrackerDistributedCacheManager.localizePublicCacheObject(486) | Cached hdfs://192.168.75.130:9000/root/input/f1.txt as /root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input/f1.txt
INFO - JobClient.monitorAndPrintJob(1380) | Running job: job_local479869714_0001
INFO - LocalJobRunner$Job.run(340) | Waiting for map tasks
INFO - LocalJobRunner$Job$MapTaskRunnable.run(204) | Starting task: attempt_local479869714_0001_m_000000_0
INFO - Task.initialize(534) | Using ResourceCalculatorPlugin : null
INFO - MapTask.runNewMapper(729) | Processing split: hdfs://192.168.75.130:9000/root/input/f1.txt:0+31
INFO - MapTask$MapOutputBuffer.<init>(949) | io.sort.mb = 100
INFO - MapTask$MapOutputBuffer.<init>(961) | data buffer = 79691776/99614720
INFO - MapTask$MapOutputBuffer.<init>(962) | record buffer = 262144/327680
INFO - TestDistributed$FileMapper.setup(57) | 开始启动setup了哈哈哈哈
获取的路径是: /root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input/f1.txt
map里输出了
map里输出了
INFO - TestDistributed$FileMapper.cleanup(107) | 清空任务了。。。。。。
INFO - MapTask$MapOutputBuffer.flush(1289) | Starting flush of map output
INFO - MapTask$MapOutputBuffer.sortAndSpill(1471) | Finished spill 0
INFO - Task.done(858) | Task:attempt_local479869714_0001_m_000000_0 is done. And is in the process of commiting
INFO - LocalJobRunner$Job.statusUpdate(466) |
INFO - Task.sendDone(970) | Task 'attempt_local479869714_0001_m_000000_0' done.
INFO - LocalJobRunner$Job$MapTaskRunnable.run(229) | Finishing task: attempt_local479869714_0001_m_000000_0
INFO - LocalJobRunner$Job.run(348) | Map task executor complete.
INFO - Task.initialize(534) | Using ResourceCalculatorPlugin : null
INFO - LocalJobRunner$Job.statusUpdate(466) |
INFO - Merger$MergeQueue.merge(408) | Merging 1 sorted segments
INFO - Merger$MergeQueue.merge(491) | Down to the last merge-pass, with 1 segments left of total size: 16 bytes
INFO - LocalJobRunner$Job.statusUpdate(466) |
我是reduce里面的东西
INFO - Task.done(858) | Task:attempt_local479869714_0001_r_000000_0 is done. And is in the process of commiting
INFO - LocalJobRunner$Job.statusUpdate(466) |
INFO - Task.commit(1011) | Task attempt_local479869714_0001_r_000000_0 is allowed to commit now
INFO - FileOutputCommitter.commitTask(173) | Saved output of task 'attempt_local479869714_0001_r_000000_0' to hdfs://192.168.75.130:9000/root/outputsort
INFO - LocalJobRunner$Job.statusUpdate(466) | reduce > reduce
INFO - Task.sendDone(970) | Task 'attempt_local479869714_0001_r_000000_0' done.
INFO - JobClient.monitorAndPrintJob(1393) | map 100% reduce 100%
INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_local479869714_0001
INFO - Counters.log(585) | Counters: 18
INFO - Counters.log(587) | File Output Format Counters
INFO - Counters.log(589) | Bytes Written=0
INFO - Counters.log(587) | File Input Format Counters
INFO - Counters.log(589) | Bytes Read=31
INFO - Counters.log(587) | FileSystemCounters
INFO - Counters.log(589) | FILE_BYTES_READ=454
INFO - Counters.log(589) | HDFS_BYTES_READ=124
INFO - Counters.log(589) | FILE_BYTES_WRITTEN=138372
INFO - Counters.log(587) | Map-Reduce Framework
INFO - Counters.log(589) | Map output materialized bytes=20
INFO - Counters.log(589) | Map input records=2
INFO - Counters.log(589) | Reduce shuffle bytes=0
INFO - Counters.log(589) | Spilled Records=4
INFO - Counters.log(589) | Map output bytes=10
INFO - Counters.log(589) | Total committed heap usage (bytes)=455475200
INFO - Counters.log(589) | Combine input records=0
INFO - Counters.log(589) | SPLIT_RAW_BYTES=109
INFO - Counters.log(589) | Reduce input records=2
INFO - Counters.log(589) | Reduce input groups=1
INFO - Counters.log(589) | Combine output records=0
INFO - Counters.log(589) | Reduce output records=0
INFO - Counters.log(589) | Map output records=2
下面,我们将程序,提交成hadoop集群上运行进行测试,注意在集群上运行,日志信息就不会在控制台显示了,我们需要去自己定义的日志目录下,找到最新提交 的那个下,然后就可以查看我们的日志信息了。
查看stdout里面的内容如下:
- 获取的路径是: /root/hadoop1.2/mylogs/taskTracker/distcache/2726204645197711229_1788685676_88844454/192.168.75.130/root/input/f1.txt
- map里输出了
- map里输出了
获取的路径是: /root/hadoop1.2/mylogs/taskTracker/distcache/2726204645197711229_1788685676_88844454/192.168.75.130/root/input/f1.txt
map里输出了
map里输出了
注意,map里面的日志需要去xxxmxxx和xxxrxxx里面去找:
当然,除了这种方式外,我们还可以直接通过50030端口在web页面上进行查看,截图示例如下:
至此,我们已经散仙已经介绍完了,这两种方式,Hadoop在执行过程中,日志会被随机分到任何一台节点上,我们可能不能确定本次提交的任务日志输出到底放在那里,但是我们可以通过在50030的web页面上,查看最新的一次任务,一般是最下面的任务,是最新提交的,通过页面上的连接我们就可以,查看到具体的本次任务的日志情况被随机分发到那个节点上了,然后就可以去具体的 节点上获取了。
这篇关于mapred-site.xml里面配置运行日志的输出目录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!