A*(AStar)算法总结

2024-03-18 08:28
文章标签 算法 总结 astar

本文主要是介绍A*(AStar)算法总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

A* 算法(念做:A Star)是一种常用的路径查找和图形遍历算法,具有较好的性能和准确度。让我为您简要介绍一下 A* 算法的原理和实现。

广度优先搜索:
广度优先搜索以广度作为优先级进行搜索。从起点开始,首先遍历起点周围邻近的点,然后再遍历已经遍历过的点邻近的点,逐步向外扩散,直到找到终点。
这种算法类似于洪水(Flood fill)一样向外扩张。
Dijkstra 算法:
Dijkstra 算法用于寻找图形中节点之间的最短路径。
考虑到不同节点之间的移动代价可能不相等,Dijkstra 算法需要计算每个节点距离起点的总移动代价。
A * 算法:
A* 算法综合了广度优先搜索和 Dijkstra 算法的特点。
它通过一个启发函数来计算每个节点的优先级,综合考虑节点距离起点的代价和距离终点的预计代价。
A* 算法在运算过程中,每次从优先队列中选取优先级最高的节点作为下一个待遍历的节点。
启发函数可以根据不同情况选择曼哈顿距离、对角距离或欧几里得距离。

实现代码

public class Node
{public int X { get; set; }public int Y { get; set; }public double G { get; set; } // 从起点到该节点的代价public double H { get; set; } // 启发式估计的终点代价public double F => G + H; // 总代价 (F = G + H)public Node Parent { get; set; } // 路径中的父节点
}
public class AStar
{private readonly int[,] _grid; // 您的网格或地图private readonly int _width;private readonly int _height;public AStar(int[,] grid){_grid = grid;_width = grid.GetLength(0);_height = grid.GetLength(1);}public List<Node> FindPath(Node start, Node goal){var openSet = new List<Node> { start }; // 待探索的节点集合var closedSet = new HashSet<Node>(); // 已探索的节点集合while (openSet.Count > 0){var current = openSet[0];for (var i = 1; i < openSet.Count; i++){if (openSet[i].F < current.F)current = openSet[i];}openSet.Remove(current);closedSet.Add(current);if (current == goal)return ReconstructPath(current);foreach (var neighbor in GetNeighbors(current)){if (closedSet.Contains(neighbor))continue;var tentativeG = current.G + GetDistance(current, neighbor);if (tentativeG < neighbor.G || !openSet.Contains(neighbor)){neighbor.Parent = current;neighbor.G = tentativeG;neighbor.H = GetDistance(neighbor, goal);if (!openSet.Contains(neighbor))openSet.Add(neighbor);}}}return null; // 未找到路径}private List<Node> ReconstructPath(Node node){var path = new List<Node> { node };while (node.Parent != null){node = node.Parent;path.Insert(0, node);}return path;}private IEnumerable<Node> GetNeighbors(Node node){// 实现获取有效邻居的逻辑var neighbors = new List<Node>();// 例如,检查相邻单元格并避开障碍物// 返回有效邻居节点的列表// 示例:检查上、下、左、右四个方向int[] dx = { -1, 1, 0, 0 };int[] dy = { 0, 0, -1, 1 };for (int i = 0; i < 4; i++){int newX = node.X + dx[i];int newY = node.Y + dy[i];if (IsValid(newX, newY)) // 检查是否在网格范围内且可行走neighbors.Add(new Node { X = newX, Y = newY });}return neighbors;}private double GetDistance(Node a, Node b){// 实现您的距离启发式函数(例如,曼哈顿距离、欧几里得距离)// 返回节点 a 和 b 之间的估计距离// 示例:曼哈顿距离return Math.Abs(a.X - b.X) + Math.Abs(a.Y - b.Y);}private bool IsValid(int x, int y){// 检查坐标是否在网格范围内且可行走return x >= 0 && x < _width && y >= 0 && y < _height && _grid[x, y] == 0;}
}

测试代码

    public void Test(){// 示例用法:var grid = new int[,]{// 您的网格数据(0 = 可行走,1 = 障碍物等)// 根据实际情况初始化};var startNode = new Node { X = 0, Y = 0 };var goalNode = new Node { X = 5, Y = 5 };var astar = new AStar(grid);var path = astar.FindPath(startNode, goalNode);}

介绍A*的博客

这篇关于A*(AStar)算法总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/821755

相关文章

Python中连接不同数据库的方法总结

《Python中连接不同数据库的方法总结》在数据驱动的现代应用开发中,Python凭借其丰富的库和强大的生态系统,成为连接各种数据库的理想编程语言,下面我们就来看看如何使用Python实现连接常用的几... 目录一、连接mysql数据库二、连接PostgreSQL数据库三、连接SQLite数据库四、连接Mo

Git提交代码详细流程及问题总结

《Git提交代码详细流程及问题总结》:本文主要介绍Git的三大分区,分别是工作区、暂存区和版本库,并详细描述了提交、推送、拉取代码和合并分支的流程,文中通过代码介绍的非常详解,需要的朋友可以参考下... 目录1.git 三大分区2.Git提交、推送、拉取代码、合并分支详细流程3.问题总结4.git push

Kubernetes常用命令大全近期总结

《Kubernetes常用命令大全近期总结》Kubernetes是用于大规模部署和管理这些容器的开源软件-在希腊语中,这个词还有“舵手”或“飞行员”的意思,使用Kubernetes(有时被称为“... 目录前言Kubernetes 的工作原理为什么要使用 Kubernetes?Kubernetes常用命令总

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python中实现进度条的多种方法总结

《Python中实现进度条的多种方法总结》在Python编程中,进度条是一个非常有用的功能,它能让用户直观地了解任务的进度,提升用户体验,本文将介绍几种在Python中实现进度条的常用方法,并通过代码... 目录一、简单的打印方式二、使用tqdm库三、使用alive-progress库四、使用progres

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

Java向kettle8.0传递参数的方式总结

《Java向kettle8.0传递参数的方式总结》介绍了如何在Kettle中传递参数到转换和作业中,包括设置全局properties、使用TransMeta和JobMeta的parameterValu... 目录1.传递参数到转换中2.传递参数到作业中总结1.传递参数到转换中1.1. 通过设置Trans的

C# Task Cancellation使用总结

《C#TaskCancellation使用总结》本文主要介绍了在使用CancellationTokenSource取消任务时的行为,以及如何使用Task的ContinueWith方法来处理任务的延... 目录C# Task Cancellation总结1、调用cancellationTokenSource.

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系