C++ 笛卡尔树

2024-03-18 03:12
文章标签 c++ 笛卡尔

本文主要是介绍C++ 笛卡尔树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 一、性质
    • 二、构建笛卡尔树
    • 三、应用
    • 四、源码

一、性质

  1. 堆性质: 笛卡尔树是一种满足堆性质的树。每个节点包含两个值:键值(key)和优先级值(priority)。在笛卡尔树中,根节点的优先级值最大,且每个节点的优先级值大于其子节点的优先级值。

  2. 中序遍历: 笛卡尔树的中序遍历结果与原始数组的顺序一致。这意味着,如果你将笛卡尔树按中序遍历的顺序输出,就会得到原始数组的顺序。

  3. 唯一性: 对于给定的键值数组,存在唯一的笛卡尔树与之对应。

在这里插入图片描述(备注:图源于 维基百科)

二、构建笛卡尔树

  1. 笛卡尔树通常是通过一个数组构建的,数组中的元素按照顺序表示树中节点的键值,另一个数组表示节点的优先级值。
  2. 通过递归的方式构建笛卡尔树:在给定数组范围内,找到优先级值最大的元素作为根节点,然后递归构建左子树和右子树。

三、应用

  1. 最小公共祖先(LCA): 通过构建笛卡尔树,可以在O(1)时间内找到任意两个节点的最小公共祖先。

  2. 区间最小值/最大值查询: 通过构建笛卡尔树,可以在O(log n)时间内查询给定区间的最小值或最大值。

四、源码

#include <iostream>
#include <vector>using namespace std;struct Node {int key;int priority;Node* left;Node* right;Node(int k, int p) : key(k), priority(p), left(nullptr), right(nullptr) {}
};Node* buildCartesianTree(vector<int>& arr, vector<int>& priority, int start, int end) {if (start > end) {return nullptr;}int maxIndex = start;for (int i = start + 1; i <= end; i++) {if (priority[i] > priority[maxIndex]) {maxIndex = i;}}Node* root = new Node(arr[maxIndex], priority[maxIndex]);root->left = buildCartesianTree(arr, priority, start, maxIndex - 1);root->right = buildCartesianTree(arr, priority, maxIndex + 1, end);return root;
}void inOrderTraversal(Node* root) {if (root) {inOrderTraversal(root->left);cout << "(" << root->key << ", " << root->priority << ") ";inOrderTraversal(root->right);}
}int main() {vector<int> arr = { 9,3,7,1,8,12,10,20,15,18,5 };vector<int> priority = { 8,10,8,11,8,4,5,2,4,2,10 };Node* root = buildCartesianTree(arr, priority, 0, arr.size() - 1);cout << "Inorder traversal of Cartesian Tree: ";inOrderTraversal(root);cout << endl;return 0;
}

这篇关于C++ 笛卡尔树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/821018

相关文章

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

c++的初始化列表与const成员

初始化列表与const成员 const成员 使用const修饰的类、结构、联合的成员变量,在类对象创建完成前一定要初始化。 不能在构造函数中初始化const成员,因为执行构造函数时,类对象已经创建完成,只有类对象创建完成才能调用成员函数,构造函数虽然特殊但也是成员函数。 在定义const成员时进行初始化,该语法只有在C11语法标准下才支持。 初始化列表 在构造函数小括号后面,主要用于给

2024/9/8 c++ smart

1.通过自己编写的class来实现unique_ptr指针的功能 #include <iostream> using namespace std; template<class T> class unique_ptr { public:         //无参构造函数         unique_ptr();         //有参构造函数         unique_ptr(