基于深度学习的口罩人脸识别研究进展

2024-03-18 01:52

本文主要是介绍基于深度学习的口罩人脸识别研究进展,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        MTCNN模型训练输入的所有图像都是正样本(戴口罩的照片),没有负样本作为模型输入。在后续的识别任务模块中,导入MTCNN模型检测结果,对特征点进行编码比较进行识别。

        基于MTCNN的口罩人脸识别框架可分为四个阶段:

        人脸检测;面部与面罩对齐;带面具的人脸编码;戴口罩人脸对应的身份识别。

         如图1所示,在训练过程中,同一目标首先需要两组输入图像(未遮蔽的人脸图像和遮蔽的人脸图像)。机器自动为未蒙版图像添加蒙版,然后将其放入样本库中与蒙版图像进行特征比较。

这个过程分为两条链:

        第一条链是首先使用MTCNN技术的三个子网络并从粗到精地提取人脸部分,然后使用MobileNet组件进行掩模检测。如果发现输入是原始图像(无掩模),则在口鼻特征点区域添加掩模,并将处理后的“掩模人脸图像”输入到识别样本数据库中。

        第二条链是MTCNN的级联校正。将采集到的蒙版人脸图像裁剪为与初始样本库相同的像素大小。然后并行将两个链接添加到样本库中,进行比较(将自动处理的蒙版人脸与原始蒙版人脸进行比较)来预测最终的人脸信息。

        在创建识别样本数据库时收集未遮蔽的人脸图像,在执行识别时收集遮蔽的人脸图像。之后,将遮罩添加到未遮罩的人脸图像中,然后将遮罩的人脸与手动处理的遮罩人脸和收集的遮罩人脸进行比较。最后输出该人的身份信息。

        对于MTCNN网络,简单调整P/R/O-Net的阈值。三个阈值控制裁剪框输出高精度的面部信息。Faceplus-mask程序主要应用脸部的68个关键点。如图2所示,为人脸添加蒙版的主要部分如下:

        (1)搜索面部68个关键点。

        (2)确定人的鼻子和面部轮廓。

        (3)根据面部轮廓确定面部左侧点、面部下侧点和面部右侧点。

        (4)从鼻子到面部底点的高度、口罩尺寸中心线确定。

        (5)将口罩左右均匀分开;使用最左侧面部点与中心轴之间的距离作为宽度来调整蒙版左侧的大小。调整右蒙版,宽度为面部右侧点到中心轴的距离。将左蒙版和右蒙版合并为一个新蒙版。

        (6) 以中心轴相对于Y轴的旋转角度调整并旋转新的掩模,最终将掩模放置在图像上的适当位置。

最后基于FaceNet开源模块对两组数据进行对比识别。

1 蒙面人脸检测部分

        正样本图片(戴口罩的人脸图片)的输入样本库使用统一尺寸的图片,因为获取的图片中可能存在手臂、肩膀等身体部位,这对于训练来说可能会产生较多的噪声,MTCNN方法是用于裁剪蒙版图片的人脸区域;而MTCNN,是一种多任务卷积神经网络,其网络模型,主要通过三个级联网络进行人脸分框,即P/R/O-Net。

        (1)P-net用于快速生成面部拦截窗口。执行过程如下:对输入特征进行三层卷积后,利用人脸分类器、边界回归和人脸关键点定位来初步选择人脸区域。然后,P-Net 的主要选择将被馈送到 R-Net 进行下一步。

        (2)R-Net 用于以更精细的方式过滤从上一步截取的面部区域。其过程是:将P-Net得到的所有候选窗口输入R-Net,淘汰较少的有效候选窗口,通过边缘回归和非极大值抑制得到进一步的预测窗口。

        (3)O-Net的作用是生成最终的识别边界和人脸的关键点。运行过程与R-Net类似,但增加了人脸特征点位置的回归预测。最后输出人脸的5个人脸特征点。

2 佩戴口罩时的面部对准部分

        主要调用“Dlib”开源库提取128个特征点,输入戴口罩的人脸图片,针对鼻子和嘴巴两个部位,在口罩遮盖下,模型自动补足特征点人脸特征点提取;深度学习部分采用Face-net模型。该模型通过提取其中一层作为特征来学习从图像到欧几里得空间的编码方法。该算法主要直接应用已建立的CNN模型(例如GoogleNet等)并在此基础上改变损失函数,以方便将人脸图像映射到高层空间层次结构。利用损失函数来优化人脸之间的欧氏距离,使得同一个人的人脸图片的误差距离最小,不同人的人脸图片的误差距离最大。根据获取的特征向量,计算“欧氏距离”进行人脸识别。网络结构如图4所示。经过这一步,人脸缺失的特征点将被填充并参与识别。

3 佩戴口罩人脸编码部分

        获取人脸128个点的特征编码,并根据人脸编码信息矩阵计算不同人脸之间的距离。

4 佩戴口罩的人脸识别部分

        所有计算距离的方法都安排好之后,就进行最后一步的人脸识别。计算数据库中的人脸数据,将信息编码后的图片存入已知人脸信息列表中。

这篇关于基于深度学习的口罩人脸识别研究进展的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/820832

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件