【5G NR 协议解读】3GPP TS 38.212 (R18) 复用和信道编码(二)

2024-03-18 00:20

本文主要是介绍【5G NR 协议解读】3GPP TS 38.212 (R18) 复用和信道编码(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

本文基于3GPP TS 38.212 (R18) 复用和信道编码协议。

本文档规定了5G NR的编码、多路复用和物理信道映射。

5 总体流程

来自/去往MAC层的数据流和控制流会进行编码/解码,以便通过无线传输链路提供传输和控制服务。信道编码方案是错误检测、错误纠正、速率匹配、交织以及传输信道或控制信息映射到/从物理信道中拆分出来的组合。

5.1 CRC计算

用a0, a1, a2, ..., aA-1表示CRC计算的输入位,用p0, p1, p2, ..., pL-1表示奇偶校验位,其中A是输入序列的大小,L是奇偶校验位的数量。奇偶校验位由以下循环生成多项式之一生成:

  • Gcrc24A(D) = [D24+D23+D18+D17+D14+D11+D10+D7+D6+D5+D4+D3+D1+1]; L=24; 
  • Gcrc24B(D) = [D24+D23+D6+D5+D1+1] ;L=24;
  • Gcrc24C(D) = [D24+D23+D21+D20+D17+D15+D13+D12+D8+D4+D2+D1+1];L=24; 
  • Gcrc16(D) = [D16+D12+D5+1] ;L=16;
  • Gcrc11(D) = [D11+D10+D9+D5+1] ;L=11;
  • Gcrc6(D) = [D6+D5+1] ;L=6;

编码以系统形式进行,这意味着在GF(2)中,多项式:

  • a0D(A+L-1)+a1D(A+L-2)+...+a(A-1)D(L)+p0D(L-1)+p1D(L-2)+...+p(L-2)D(1)+p(L-1)

当上面的多项式被相应的CRC生成多项式除时,它的余数为0。

附加CRC后的位用 ( b_0, b_1, b_2, ..., b_{n-1} ) 表示,其中 ( n ) 是总位数。原始数据位用 ( a_0, a_1, a_2, ..., a_{A-1} ) 表示,其中 ( A ) 是原始数据的位数。( b ) 与 ( a ) 之间的关系可以通过串联CRC校验位和原始数据位来表示:( b = a || crc ),其中 ( crc ) 是根据原始数据计算得到的CRC校验位。这个关系确保了接收方可以通过对接收到的数据进行CRC校验来检测数据传输过程中是否发生了错误。

function crc = calculateCRC(data, poly, initValue, finalXor)  % data: 输入数据,应为uint8类型的数组  % poly: CRC多项式,例如CRC-8的多项式可以是0x07  % initValue: CRC计算的初始值  % finalXor: 计算结束后与CRC值进行异或操作的值(如果不需要,可以设置为0)  % 确保输入数据是uint8类型  if ~isa(data, 'uint8')  error('Input data must be of type uint8.');  end  % 初始化CRC寄存器  crc = uint8(initValue);  % 对输入数据的每个字节进行处理  for i = 1:length(data)  % 将当前字节与CRC寄存器进行异或操作  crc = bitxor(crc, data(i));  % 对异或结果进行模2除法(实际上是按位异或和移位操作)  for j = 1:8  if crc & 0x80 ~= 0 % 检查最高位是否为1  crc = bitshift(crc, -1); % 右移一位  crc = bitxor(crc, poly); % 如果最高位是1,则与多项式进行异或  else  crc = bitshift(crc, -1); % 右移一位  end  end  end  % 应用最终的异或操作(如果有的话)  crc = bitxor(crc, finalXor);  
end  % 示例用法:  
data = uint8([72 101 108 108 111 32 87 111 114 108 100]); % "Hello World"字符串转换为uint8数组  
poly = 0x07; % CRC-8多项式示例  
initValue = 0x00; % 初始值示例  
finalXor = 0x00; % 最终异或值示例(通常不需要)  crcValue = calculateCRC(data, poly, initValue, finalXor);  
disp(['CRC value: ', num2hex(crcValue)]);

这篇关于【5G NR 协议解读】3GPP TS 38.212 (R18) 复用和信道编码(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/820659

相关文章

Java序列化之serialVersionUID的用法解读

《Java序列化之serialVersionUID的用法解读》Java序列化之serialVersionUID:本文介绍了Java对象的序列化和反序列化过程,强调了serialVersionUID的作... 目录JavChina编程a序列化之serialVersionUID什么是序列化为什么要序列化serialV

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

MySQL之搜索引擎使用解读

《MySQL之搜索引擎使用解读》MySQL存储引擎是数据存储和管理的核心组件,不同引擎(如InnoDB、MyISAM)采用不同机制,InnoDB支持事务与行锁,适合高并发场景;MyISAM不支持事务,... 目录mysql的存储引擎是什么MySQL存储引擎的功能MySQL的存储引擎的分类查看存储引擎1.命令

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

MySQL8.0临时表空间的使用及解读

《MySQL8.0临时表空间的使用及解读》MySQL8.0+引入会话级(temp_N.ibt)和全局(ibtmp1)InnoDB临时表空间,用于存储临时数据及事务日志,自动创建与回收,重启释放,管理高... 目录一、核心概念:为什么需要“临时表空间”?二、InnoDB 临时表空间的两种类型1. 会话级临时表

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

Java对接MQTT协议的完整实现示例代码

《Java对接MQTT协议的完整实现示例代码》MQTT是一个基于客户端-服务器的消息发布/订阅传输协议,MQTT协议是轻量、简单、开放和易于实现的,这些特点使它适用范围非常广泛,:本文主要介绍Ja... 目录前言前置依赖1. MQTT配置类代码解析1.1 MQTT客户端工厂1.2 MQTT消息订阅适配器1.

Linux中的自定义协议+序列反序列化用法

《Linux中的自定义协议+序列反序列化用法》文章探讨网络程序在应用层的实现,涉及TCP协议的数据传输机制、结构化数据的序列化与反序列化方法,以及通过JSON和自定义协议构建网络计算器的思路,强调分层... 目录一,再次理解协议二,序列化和反序列化三,实现网络计算器3.1 日志文件3.2Socket.hpp

C语言自定义类型之联合和枚举解读

《C语言自定义类型之联合和枚举解读》联合体共享内存,大小由最大成员决定,遵循对齐规则;枚举类型列举可能值,提升可读性和类型安全性,两者在C语言中用于优化内存和程序效率... 目录一、联合体1.1 联合体类型的声明1.2 联合体的特点1.2.1 特点11.2.2 特点21.2.3 特点31.3 联合体的大小1