本文主要是介绍第K小的数 快速排序 选择前K大O(n) 乱序数组中位数 median,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
利用快速排序partition:
#include <iostream>
#include <map>
#include <algorithm>
#include <limits.h>
#include <assert.h>
using namespace std;
int selectK(int num[], int k, int left, int right) {assert(k <= (right - left + 1) && k >= 1);int mid = (left + right) / 2, i = left, j = right, pivot = num[mid];while (i <= j) {while (num[i] < pivot) {++i;}while (num[j] > pivot) {--j;}if (i <= j) {swap(num[i], num[j]);++i, --j;}}if (k == i - left && i - 1 == j + 1) {return pivot;}else if (k <= i - left) {return selectK(num, k, left, i-1);}else if (k > i - left) {return selectK(num, k - (i - left), i, right);}
}
int main() {int num[] = { 3, 2, 1, 4, 5, 6 };int res1 = selectK(num, 1, 0, 5);int res2 = selectK(num, 2, 0, 5);int res3 = selectK(num, 3, 0, 5);int res4 = selectK(num, 4, 0, 5);int res5 = selectK(num, 5, 0, 5);int res6 = selectK(num, 6, 0, 5);//int res6 = selectK(num, 6, 0, 4);return 0;
}
[l,i-1] <= pivot <= [j+1,r]
Python version:
from itertools import permutations#1. must confirm num[left, i-1] <= pivot <= num[j+1, right], that's why <= couldn't be replaced by < since it's impossible.
def selectKth(num, k, left, right):assert (k <= right-left+1 and k >= 1)mid = (left+right)//2i,j,pivot=left,right,num[mid]while (i <= j): #2. must be <= instead of < since the returned condition required, otherwise, the recursive depth will be exceededwhile (num[i] < pivot): #3. must be < instead of <= since num[left, i-1] <= pivot <= num[j+1, right]i = i + 1while (num[j] > pivot): #3. must be > instead of >= since num[left, i-1] <= pivot <= num[j+1, right]j = j - 1if (i <= j): #2. must be <= instead of < since the returned condition required, otherwise, the recursive depth will be exceedednum[i],num[j]=num[j],num[i]i,j = i+1,j-1#4. For num[left, i-1] <= pivot <= num[j+1, right], there're 2 cases for breaking the loop as the figure illustratedif (k == i-left and i-1==j+1 and pivot == num[i-1]):return pivotelif (k <= i-left):return selectKth(num, k, left, i-1)elif (k > i-left):return selectKth(num, k-(i-left), i, right)if __name__ == '__main__':perms = permutations([1,2,3,4,5,6], 6)for i in perms:for k in range(1, 7):perm = list(i)beforeSelect = list(i)kthNum = selectKth(perm, k, 0, 5)print("perm={0} k={1} kth={2}".format(beforeSelect, k, kthNum))assert (k == kthNum)
BTW, there's a O(n) method for selecting the first k numbers. Think over it!!!
from itertools import permutations# must confirm num[left, i-1] <= pivot <= num[j+1, right], that's why <= couldn't be replaced by < since it's impossible.def selectTopK(num, k, left, right):assert (k <= right - left + 1 and k >= 1)mid = (left + right) // 2i, j, pivot = left, right, num[mid]# must i <= j,while (i <= j):while (num[i] < pivot):i = i + 1while (num[j] > pivot):j = j - 1if (i <= j):num[i], num[j] = num[j], num[i]i, j = i + 1, j - 1# num[left, i-1] <= pivot <= num[j+1, right]if (k == i - left and i - 1 == j + 1 and pivot == num[i - 1]):return i - 1elif (k <= i - left):return selectTopK(num, k, left, i - 1)elif (k > i - left):return selectTopK(num, k - (i - left), i, right)if __name__ == '__main__':raw = [1, 2, 3, 1, 2, 3]rawlen = len(raw)perms = permutations(raw, rawlen)for i in perms:for k in range(1, rawlen+1):beforeSelect = list(i)kthIndex = selectTopK(beforeSelect, k, 0, rawlen-1)selectedTopK = beforeSelect[:kthIndex + 1]selectedTopK.sort()beforeSelect2 = list(i)beforeSelect2.sort()topK = beforeSelect2[:kthIndex + 1]print("perm={0} selected={1} topK={2}".format(beforeSelect, selectedTopK, topK))assert (topK == selectedTopK)
这篇关于第K小的数 快速排序 选择前K大O(n) 乱序数组中位数 median的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!