bzero memset置零的性能比较

2024-03-17 11:08
文章标签 比较 性能 memset bzero

本文主要是介绍bzero memset置零的性能比较,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 关于字符数组的初始化,在项目的压力测试中,发现性能明显下降,变怀疑在程序中的若干临时字符数组的初始化(使用bzero)身上。于是修改为首个字符置 零的方式而非全部置零的方式初始化,响应得到明显的提升。原来在mp3检索的每一条结果都要进行bzero对临时数组初始化,每一个请求需要30次的 bzero对临时数组的置零。于是想到了,在非必要的情况下,只对临时数组的第一个(或前几个)字符置零的初始化方式对比与使用bzero的话,能够明显 提高性能。

在此之外,又想起另外两种对数组所有字节都置零的方式,顺便比较一下他们之间的性能,写个简单的程序如下:

#include <stdio.h>
#include <sys/time.h>
#include <string.h>

#define TIMEDIFF(s, e) (((e.tv_sec)-(s.tv_sec))*1000000 + (e.tv_usec) - (s.tv_usec))

int main()
{
    struct timeval s, e;
    char a[1024], b[1024*1024], c[1024*1024*4];

    gettimeofday(&s, NULL);
    bzero(a, sizeof(a));
    gettimeofday(&e, NULL);
    printf("bzero 1k: %d/n", TIMEDIFF(s, e));

    gettimeofday(&s, NULL);
    bzero(b, sizeof(b));
    gettimeofday(&e, NULL);
    printf("bzero 1m: %d/n", TIMEDIFF(s, e));

    gettimeofday(&s, NULL);
    bzero(c, sizeof(c));
    gettimeofday(&e, NULL);
    printf("bzero 4M: %d/n", TIMEDIFF(s, e));

    gettimeofday(&s, NULL);
    memset(a, 0, sizeof(a));
    gettimeofday(&e, NULL);
    printf("memset 1k: %d/n", TIMEDIFF(s, e));

    gettimeofday(&s, NULL);
    memset(b, 0, sizeof(b));
    gettimeofday(&e, NULL);
    printf("memset 1M: %d/n", TIMEDIFF(s, e));

    gettimeofday(&s, NULL);
    memset(c, 0, sizeof(c));
    gettimeofday(&e, NULL);
    printf("memset 4M: %d/n", TIMEDIFF(s, e));

    gettimeofday(&s, NULL);
    for(int i=0; i<sizeof(a); ++i)
        a[i]=0;
    gettimeofday(&e, NULL);
    printf("for 1k: %d/n", TIMEDIFF(s, e));

    gettimeofday(&s, NULL);
    for(int i=0; i<sizeof(b); ++i)
        b[i]=0;
    gettimeofday(&e, NULL);
    printf("for 1M: %d/n", TIMEDIFF(s, e));

    gettimeofday(&s, NULL);
    memset(c, 0, sizeof(c));
    gettimeofday(&e, NULL);
    printf("memset 4M: %d/n", TIMEDIFF(s, e));

    gettimeofday(&s, NULL);
    for(int i=0; i<sizeof(a); ++i)
        a[i]=0;
    gettimeofday(&e, NULL);
    printf("for 1k: %d/n", TIMEDIFF(s, e));

    gettimeofday(&s, NULL);
    for(int i=0; i<sizeof(b); ++i)
        b[i]=0;
    gettimeofday(&e, NULL);
    printf("for 1M: %d/n", TIMEDIFF(s, e));

    gettimeofday(&s, NULL);
    for(int i=0; i<sizeof(c); ++i)
        c[i]=0;
    gettimeofday(&e, NULL);
    printf("for 4M: %d/n", TIMEDIFF(s, e));
}

运行的结果基本上是,在数组较小的情况下,bzero的效率比memset高;当数组超过一定大小之后,bzero的效率开始比memset低;数组越 大,memset的性能优势越明显。而在数组较小的情况下,memset的性能甚至不如直接for循环对数组中的每一个字节置零的方法。

以下的运行结果的数值单位是微秒(gettimeofday的默认单位)。

第一次运行:
bzero 1k: 6
bzero 1m: 2168
bzero 4M: 9136
memset 1k: 11
memset 1M: 1303
memset 4M: 5483
for 1k: 12
for 1M: 4934
for 4M: 21313

再一次运行:
bzero 1k: 6
bzero 1m: 2160
bzero 4M: 9067
memset 1k: 17
memset 1M: 1257
memset 4M: 5115
for 1k: 11
for 1M: 4866
for 4M: 19201

此后,又写了个小程序,测试在堆上的数组中,bzero和memset的效率,发现两者差不多。可能由于,里面原来的数据就比较有规则,不管是否先对数组置一随机值。(malloc开辟字符数组空间时,会清零的。)

#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <stdlib.h>
#include <time.h>

#define TIMEDIFF(s, e) (((e.tv_sec)-(s.tv_sec))*1000000 + (e.tv_usec) - (s.tv_usec))

int main()
{
    srand(time(NULL));
    char *array;
    struct timeval s, e;
    int tb, tm;
    for(int i=1; i<1024*1024*1024; i*=2)
    {
        array=(char*)malloc(i);
        memset(array, rand()%256, i);
        gettimeofday(&s, NULL);
        bzero(array, i);
        gettimeofday(&e, NULL);
        tb=TIMEDIFF(s, e);
        free(array);

        array=(char*)malloc(i);
        memset(array, rand()%256, i);
        gettimeofday(&s, NULL);
        memset(array, 0, i);
        gettimeofday(&e, NULL);
        tm=TIMEDIFF(s, e);
        free(array);

        printf("array size: %d /tbzero time: %d /tmemset time: %d /tbzero>memset?: %d/n", i, tb, tm, (tb>tm));

    }
}


运行结果:
array size: 1   bzero time: 28 memset time: 1 bzero>memset?: 1
array size: 2   bzero time: 1   memset time: 1 bzero>memset?: 0
array size: 4   bzero time: 1   memset time: 1 bzero>memset?: 0
array size: 8   bzero time: 1   memset time: 1 bzero>memset?: 0
array size: 16 bzero time: 1   memset time: 1 bzero>memset?: 0
array size: 32 bzero time: 1   memset time: 1 bzero>memset?: 0
array size: 64 bzero time: 1   memset time: 0 bzero>memset?: 1
array size: 128         bzero time: 1   memset time: 1 bzero>memset?: 0
array size: 256         bzero time: 1   memset time: 1 bzero>memset?: 0
array size: 512         bzero time: 1   memset time: 1 bzero>memset?: 0
array size: 1024        bzero time: 1   memset time: 1 bzero>memset?: 0
array size: 2048        bzero time: 1   memset time: 1 bzero>memset?: 0
array size: 4096        bzero time: 2   memset time: 2 bzero>memset?: 0
array size: 8192        bzero time: 2   memset time: 2 bzero>memset?: 0
array size: 16384       bzero time: 5   memset time: 6 bzero>memset?: 0
array size: 32768       bzero time: 9   memset time: 8 bzero>memset?: 1
array size: 65536       bzero time: 27 memset time: 24         bzero>memset?: 1
array size: 131072      bzero time: 81 memset time: 68         bzero>memset?: 1
array size: 262144      bzero time: 190         memset time: 169        bzero>memset?: 1
array size: 524288      bzero time: 447         memset time: 393        bzero>memset?: 1
array size: 1048576     bzero time: 996         memset time: 973        bzero>memset?: 1
array size: 2097152     bzero time: 2258        memset time: 2272       bzero>memset?: 0
array size: 4194304     bzero time: 4821        memset time: 4799       bzero>memset?: 1
array size: 8388608     bzero time: 9797        memset time: 9799       bzero>memset?: 0
array size: 16777216    bzero time: 19764       memset time: 19737      bzero>memset?: 1
array size: 33554432    bzero time: 39687       memset time: 39675      bzero>memset?: 1
array size: 67108864    bzero time: 79907       memset time: 79324      bzero>memset?: 1
array size: 134217728   bzero time: 158956      memset time: 158775     bzero>memset?: 1
array size: 268435456   bzero time: 318247      memset time: 318632     bzero>memset?: 0
array size: 536870912   bzero time: 638536      memset time: 638883     bzero>memset?: 0

这篇关于bzero memset置零的性能比较的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/818768

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Golang中拼接字符串的6种方式性能对比

《Golang中拼接字符串的6种方式性能对比》golang的string类型是不可修改的,对于拼接字符串来说,本质上还是创建一个新的对象将数据放进去,主要有6种拼接方式,下面小编就来为大家详细讲讲吧... 目录拼接方式介绍性能对比测试代码测试结果源码分析golang的string类型是不可修改的,对于拼接字

mysql线上查询之前要性能调优的技巧及示例

《mysql线上查询之前要性能调优的技巧及示例》文章介绍了查询优化的几种方法,包括使用索引、避免不必要的列和行、有效的JOIN策略、子查询和派生表的优化、查询提示和优化器提示等,这些方法可以帮助提高数... 目录避免不必要的列和行使用有效的JOIN策略使用子查询和派生表时要小心使用查询提示和优化器提示其他常

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

C#比较两个List集合内容是否相同的几种方法

《C#比较两个List集合内容是否相同的几种方法》本文详细介绍了在C#中比较两个List集合内容是否相同的方法,包括非自定义类和自定义类的元素比较,对于非自定义类,可以使用SequenceEqual、... 目录 一、非自定义类的元素比较1. 使用 SequenceEqual 方法(顺序和内容都相等)2.

对postgresql日期和时间的比较

《对postgresql日期和时间的比较》文章介绍了在数据库中处理日期和时间类型时的一些注意事项,包括如何将字符串转换为日期或时间类型,以及在比较时自动转换的情况,作者建议在使用数据库时,根据具体情况... 目录PostgreSQL日期和时间比较DB里保存到时分秒,需要和年月日比较db里存储date或者ti

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五