Linear Alignment 与 Chimeric Alignment

2024-03-16 20:32
文章标签 linear alignment chimeric

本文主要是介绍Linear Alignment 与 Chimeric Alignment,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

reads比对到参考序列后,bam文件中会有2048、2064这样的flag,表示supplementary alignment 。 为了理解这个概念,可能需要以下知识。

Linear Alignment

An alignment of a read to a single reference sequence that may include insertions, deletions, skips and clipping, but may not include direction changes (i.e. one portion of the alignment on forward strand and another portion of alignment on reverse strand). 1

Chimeric Alignment

An alignment of a read that cannot be represented as a linear alignment. Typically, one of the linear alignments in a chimeric alignment is considered the “representative” alignment, and the others are called “supplementary” and are distinguished by the supplementary alignment flag. 1

Chimeric reads are indicative of structural variation in DNA-seq and it may indicate the presence of chimeric genes in RNA-seq. 2

In short, chimeric reads can be split in to two or more parts, each part would be mapped to reference(it’s not hard-clipped), the total length of the mapped part is longger than read length. 3

Representative alignment

A chimeric alignment that is represented as a set of linear alignments that do not have large overlaps typically has one linear alignment that is considered the representative alignment.

I don’t understand representative alignment with the word “representative” in my mother tongue and could not find more information(figure) about it. One read can align to multiple positions, we can find one alignmnet position which sequence do not have large overlaps, it called representative alighment, for other alignment positions, we called them supplementary alignment.

It seems that GATK can realignment those representative reads to the correctly position via RealignerTargetCreator and IndelRealigner. (WARNING: I am not quite sure if I understand this correctly. If someone could help me, please leave me a message below, thanks, thanks.)

Supplementary Alignment

A chimeric reads but not a representative reads.

Primary Alignment and Secondary Alignment

A read may map ambiguously to multiple locations, e.g. due to repeats. Only one of the multiple read alignments is considered primary, and this decision may be arbitrary. All other alignments have the secondary alignment flag.

这篇关于Linear Alignment 与 Chimeric Alignment的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/816639

相关文章

理解分类器(linear)为什么可以做语义方向的指导?(解纠缠)

Attribute Manipulation(属性编辑)、disentanglement(解纠缠)常用的两种做法:线性探针和PCA_disentanglement和alignment-CSDN博客 在解纠缠的过程中,有一种非常简单的方法来引导G向某个方向进行生成,然后我们通过向不同的方向进行行走,那么就会得到这个属性上的图像。那么你利用多个方向进行生成,便得到了各种方向的图像,每个方向对应了很多

VSCode中latex文件(Misplaced alignment tab character .LaTeX

Misplaced alignment tab character &.LaTeX 先给出参考文章1 Misplaced alignment tab character &.LaTeX 把bib文件中的 &改为 and 。删除原有的bbl文件、重新运行 选择这个运行 这个错误在overleaf上并没有遇到、在vscode上遇到了 方法二就是把 &改为 \& ,记得删除

Anchor Alignment Metric来优化目标检测的标签分配和损失函数。

文章目录 背景假设情况任务和目标TaskAligned方法的应用1. **计算Anchor Alignment Metric**2. **动态样本分配**3. **调整损失函数** 示例总结 背景 假设我们在进行目标检测任务,并且使用了YOLOv8模型。我们希望通过TaskAligned方法来优化Anchor与目标的匹配程度,从而提升检测效果。 假设情况 图像: 一张包含

【CSS渐变】背景中的百分比:深入理解`linear-gradient`,进度条填充

在现代网页设计中,CSS渐变是一种非常流行的视觉效果,它为网页背景或元素添加了深度和动态感。linear-gradient函数是实现线性渐变的关键工具,它允许我们创建从一种颜色平滑过渡到另一种颜色的视觉效果。在本篇博客中,我们将深入探讨linear-gradient函数中的百分比值,特别是像#C3002F 50%, #e8e8e8 0这样的用法,以及它们如何影响渐变效果。 什么是linear-g

Spark MLlib模型训练—回归算法 Linear regression

Spark MLlib模型训练—回归算法 Linear regression 线性回归是回归分析中最基础且应用广泛的一种方法。它用于建模目标变量和一个或多个自变量之间的关系。随着大数据时代的到来,使用像 Spark 这样的分布式计算框架进行大规模数据处理和建模变得尤为重要。本文将全面解析 Spark 中的线性回归算法,介绍其原理、参数、Scala 实现、代码解读、结果分析以及实际应用场景。 1

线性代数:线性代数(Linear Algebra)综述

文章目录 矩阵 / Matrix元素运算加法 A + B A+B A+B数量乘法 c A cA cA与向量之间的运算乘法 A b A\mathbf{b} Ab 与矩阵之间的运算矩阵乘法 乘方 性质方阵 / Square Matrix零矩阵对角矩阵 / Diagonal Matrix单位矩阵 / Identity Matrix转置 / Transpose逆矩阵 / Inverse Mat

Spark MLlib模型训练—回归算法 GLR( Generalized Linear Regression)

Spark MLlib模型训练—回归算法 GLR( Generalized Linear Regression) 在大数据分析中,线性回归虽然常用,但在许多实际场景中,目标变量和特征之间的关系并非线性,这时广义线性回归(Generalized Linear Regression, GLR)便应运而生。GLR 是线性回归的扩展,能够处理非正态分布的目标变量,广泛用于分类、回归以及其他统计建模任务。

阿里PAI-ChatLearn:大规模 Alignment高效训练框架正式开源

导读 ChatGPT是OpenAI开发的基于大型语言模型(LLM)的聊天机器人,以其令人惊叹的对话能力而迅速火爆并被广泛采用。ChatGPT 成功背后得益于大型语言模型生成领域的新训练范式:RLHF (Reinforcement Learning from Human Feedback),即以强化学习方式依据人类反馈优化语言模型。不同于传统的深度学习训练,只涉及到单个模型的迭代和优化,以 RLH

linear-gradient 渐变

CSS3 Gradient 分为  linear-gradient(线性渐变)和  radial-gradient(径向渐变)。而我们今天主要是针对线性渐变来剖析其具体的用法。为了更好的应用 CSS3 Gradient,我们需要先了解一下目前的几种现代浏览器的内核,主要有 Mozilla(Firefox,Flock等)、WebKit(Safari、Chrome等)、Opera(Opera浏览器

机器学习—线性回归算法(Linear Regression)

目录 一、基本概念二、线性回归简单分类与模型三、线性回归的关键步骤四、线性回归问题分析五、线性回归问题的解法1、最小二乘法2、梯度下降法 六、线性回归中的过拟合与欠拟合1、过拟合1、岭回归(Ridge Regression)2、套索回归 (Lasso回归)(Lasso Regression)3、弹性网(Elastic Net) 2、欠拟合 七、线性回归中的超参数与模型评估方法1、超参数(Hy