C++ 优先级队列(大小根堆)OJ

2024-03-16 19:36

本文主要是介绍C++ 优先级队列(大小根堆)OJ,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1、 1046. 最后一块石头的重量

2、 703. 数据流中的第 K 大元素

        为什么小根堆可以解决TopK问题? 

3、 692. 前K个高频单词

4、 295. 数据流的中位数


1、 1046. 最后一块石头的重量

 思路:根据示例发现可以用大根堆(降序)模拟这个过程。

class Solution {
public:int lastStoneWeight(vector<int>& stones) {priority_queue<int> heap;for (auto s : stones)heap.push(s);while (heap.size() > 1) {int a = heap.top();heap.pop();int b = heap.top();heap.pop();if (a > b)heap.push(a - b);}return heap.size() ? heap.top() : 0;}
};

2、 703. 数据流中的第 K 大元素

 思路:TopK问题使用小根堆堆解决,priority_queue(默认大根堆)的第三个参数为greater<类型>即为小根堆。

class KthLargest {
public:int _k;priority_queue<int, vector<int>, greater<int>> heap;KthLargest(int k, vector<int>& nums) {_k = k;for (auto n : nums) {heap.push(n);if (heap.size() > _k)heap.pop();}}int add(int val) {heap.push(val);if (heap.size() > _k)heap.pop();return heap.top();}
};/*** Your KthLargest object will be instantiated and called as such:* KthLargest* obj = new KthLargest(k, nums);* int param_1 = obj->add(val);*/

为什么小根堆可以解决TopK问题? 

对于设计一个找到数据流中第k大元素的类的问题,我们应该使用小根堆(Min Heap)来实现。下面解释为什么使用小根堆以及如何使用它:

  1. 为什么使用小根堆:

    • 小根堆能够保证堆顶元素是堆中最小的元素。在维护数据流中的第k大元素时,我们希望能够快速访问到第k大的元素,而不是最小的元素。通过维护一个大小为k的小根堆,堆中的元素就是数据流中最大的k个元素,而堆顶元素(最小元素)就是这k个元素中第k大的元素。
    • 当新的元素加入时,如果它大于堆顶元素,我们就将它加入堆中,并移除堆顶元素,这样堆的大小仍然保持为k。这样做可以确保堆中始终是数据流中最大的k个元素,而堆顶元素就是这些元素中最小的,即第k大的元素。
  2. 如何使用小根堆:

    • 初始化时,将数组nums中的元素加入小根堆中,如果元素数量超过k,则移除堆顶元素,以保证堆的大小为k。
    • 对于add方法,每次加入一个新元素时,先将其加入到小根堆中。如果加入后堆的大小超过k,则移除堆顶元素。然后返回堆顶元素,即为当前数据流中第k大的元素。

通过使用小根堆,我们可以高效地解决数据流中的第k大元素问题,同时保证时间复杂度和空间复杂度都在合理的范围内。

3、 692. 前K个高频单词

 思路:

  • 频次统计:首先,使用哈希表记录每个单词出现的频次。
  • 优先队列排序:利用优先队列(或小根堆)根据单词的频次和字典序排序,从而找出频次最高的前 k 个单词。

实现步骤

  1. 处理单词列表

    • 利用哈希表统计每个单词出现的次数,确保单词不会重复计数且记录了它们的频次。
  2. 使用小根堆选择前 k 大元素

    • 根据问题要求,设计比较器(cmp):
      • 频次不同:频次较少的优先(小根堆性质)。
      • 频次相同:字典序较小的优先(大根堆性质)。
    • 使用优先队列(小根堆)存储单词及其频次,保证堆的大小不超过 k
    • 将每个单词和它的频次插入到堆中,如果堆的大小超过了 k,就移除堆顶元素。
  3. 获取结果

    • 最终,堆中剩余的就是频次最高的前 k 个单词。反向遍历堆,将元素按正确的顺序存入结果列表中。
class Solution {
public:typedef pair<string,int> PSI;struct cmp{bool operator()(const PSI& a,const PSI& b){if(a.second==b.second){return a.first<b.first;}return a.second>b.second;}};vector<string> topKFrequent(vector<string>& words, int k) {unordered_map<string,int> hash;for(auto& s:words)hash[s]++;priority_queue<PSI,vector<PSI>,cmp> heap;for(auto& psi:hash){heap.push(psi);if(heap.size()>k)heap.pop();}vector<string> ret(k);for(int i=k-1;i>=0;i--){ret[i]=heap.top().first;heap.pop();}return ret;}
};

4、 295. 数据流的中位数

实现一个动态中位数查找器

 动态数据流中位数查找是一种常见问题,可以通过聪明地运用数据结构来解决。以下是如何通过维护两个堆:一个大根堆和一个小根堆—来实现一个动态中位数查找器的步骤。

解决方法:利用两个堆

算法思路

本解法是一个关于堆数据结构的经典应用。通过将数据流平分或近似平分为两个部分:一个较小部分和一个较大部分—可以高效解决问题:

  • 较小的部分在大根堆(left)中。

  • 较大的部分在小根堆(right)中。

  • 如此设置允许我们在常数时间内获得中位数。

动态添加数据

我们需要保证left比right大1或者left等于right,这样才能算出中位数,当有新数据加入时,进行以下步骤以保持两个堆的平衡:

  1. 两个堆的大小相同 (left.size() == right.size()):

    • 若堆为空,直接将 num 放入 left 中。

    • 若 num <= left.top(),将 x 放入 left

    • 否则,先将 num 放入 right,再将 right 的堆顶元素移到 left 中。

  2. 两个堆的大小不相同 (left.size() > right.size()+1):

    • 若 num 小于或等于 left.top(),再将 left 的堆顶元素移到 right 中。

    • 否则,将 num 放入 right

查找中位数

  • 若两个堆的大小相同,中位数是两个堆顶元素的平均值。

  • 否则,中位数是 left 堆的顶元素。
class MedianFinder
{priority_queue<int> left; // 大根堆priority_queue<int, vector<int>, greater<int>> right; // 小根堆public:MedianFinder() {}void addNum(int num){// 分类讨论即可if(left.size() == right.size()) // 左右两个堆的元素个数相同{if(left.empty() || num <= left.top()) // 放 left 里面{left.push(num);}else{right.push(num);left.push(right.top());right.pop();}}else{if(num <= left.top()){left.push(num);right.push(left.top());left.pop();}else{right.push(num);}}}double findMedian(){if(left.size() == right.size()) return (left.top() + right.top()) / 2.0;else return left.top();}
};

这篇关于C++ 优先级队列(大小根堆)OJ的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/816501

相关文章

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase

C++ Primer 标准库vector示例详解

《C++Primer标准库vector示例详解》该文章主要介绍了C++标准库中的vector类型,包括其定义、初始化、成员函数以及常见操作,文章详细解释了如何使用vector来存储和操作对象集合,... 目录3.3标准库Vector定义和初始化vector对象通列表初始化vector对象创建指定数量的元素值

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

Spring Boot整合消息队列RabbitMQ的实现示例

《SpringBoot整合消息队列RabbitMQ的实现示例》本文主要介绍了SpringBoot整合消息队列RabbitMQ的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录RabbitMQ 简介与安装1. RabbitMQ 简介2. RabbitMQ 安装Spring

C++一个数组赋值给另一个数组方式

《C++一个数组赋值给另一个数组方式》文章介绍了三种在C++中将一个数组赋值给另一个数组的方法:使用循环逐个元素赋值、使用标准库函数std::copy或std::memcpy以及使用标准库容器,每种方... 目录C++一个数组赋值给另一个数组循环遍历赋值使用标准库中的函数 std::copy 或 std::

MySQL8.0设置redo缓存大小的实现

《MySQL8.0设置redo缓存大小的实现》本文主要在MySQL8.0.30及之后版本中使用innodb_redo_log_capacity参数在线更改redo缓存文件大小,下面就来介绍一下,具有一... mysql 8.0.30及之后版本可以使用innodb_redo_log_capacity参数来更改

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没