基于tensorflow2、CNN的手写数字识别项目

2024-03-16 17:10

本文主要是介绍基于tensorflow2、CNN的手写数字识别项目,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

手写数字识别实战——基于tensorflow2、CNN

项目说明

该手写数字识别实战是基于tensorflow2的深度学习项目,使用tensorflow自带的MNIST手写数据集作为数据集,使用了CNN网络,最后使用模型预测手写图片。

项目环境

基础环境:python+anaconda
框架:tensorflow2

实现步骤

一、数据处理


import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt"""
数据处理
"""
# 加载MNIST
mnist = tf.keras.datasets.mnist
# 加载MNIST数据集为训练集和测试集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 归一化操作
x_train, x_test = x_train / 255., x_test / 255.
# 增加维度
x_train = tf.expand_dims(x_train, -1)
x_test = tf.expand_dims(x_test, -1)
# 转换为one-hot编码
y_train = np.float32(tf.keras.utils.to_categorical(y_train, num_classes=10))
y_test = np.float32(tf.keras.utils.to_categorical(y_test, num_classes=10))
# 设置批量大小
batch_size = 256
# 载入数据为dataset
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(batch_size).shuffle(batch_size * 10)
test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(batch_size)

二、搭建网络

"""
搭建网络
"""
# 输入
input_img=tf.keras.Input([28,28,1])
# 第一层卷积
conv1=tf.keras.layers.Conv2D(filters=32,kernel_size=3,padding='SAME',activation=tf.nn.relu)(input_img)
# 第二层卷积
conv2=tf.keras.layers.Conv2D(filters=64,kernel_size=3,padding='SAME',activation=tf.nn.relu)(conv1)
# 最大池化
pool=tf.keras.layers.MaxPool2D(pool_size=2,strides=2)(conv2)
# 第三层卷积
conv3=tf.keras.layers.Conv2D(filters=128,kernel_size=3,padding='SAME',activation=tf.nn.relu)(pool)
# flatten拉平
flat=tf.keras.layers.Flatten()(conv3)
# 全连接层
dense1=tf.keras.layers.Dense(units=512,activation=tf.nn.relu)(flat)
# 全连接层
dense2=tf.keras.layers.Dense(units=10,activation=tf.nn.softmax)(dense1)
# 指定模型的输入和输出
model=tf.keras.Model(inputs=input_img,outputs=dense2)
model.summary()	#查看网络结构

三、模型训练及评估

"""
模型训练及评估
"""
# 配置训练方法
model.compile(optimizer=tf.optimizers.Adam(learning_rate=1e-3),loss='categorical_crossentropy',metrics=['accuracy'])
# 执行训练过程
model.fit(train_dataset,epochs=10)
# 模型评估
score=model.evaluate(test_dataset)
print('last score:',score)
# 保存模型
model.save('model.h5')

四、预测单张手写数字

import tensorflow as tf
import numpy as np
import cv2def img_show(img):          # 展示图片cv2.imshow('img',img)cv2.waitKey(0)"""
单张数字图片预测
"""# 读取图片
img=cv2.imread('./detect_img/6.png')	# 传入待预测图片
# print(img.shape)
# img_show(img)
# 转灰度图
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# img_show(img)
# 改变尺寸
img=cv2.resize(img,(28,28))
# img_show(img)
# 转黑底白字、归一化
img=(255-img)/255
# img_show(img)
# 转为4维
img= img.reshape((1,28,28,1))
# print(img.shape)
# 加载模型
model = tf.keras.models.load_model('model.h5')
# 预测
probabilities = model.predict(img)
print(probabilities)
prediction = np.argmax(probabilities)
prediction_values =np.max(probabilities)
print('预测:  结果:{}  概率:{:.2%}'.format(prediction,prediction_values))

最终效果

待预测手写数字图片:
在这里插入图片描述

预测结果:
在这里插入图片描述

多张预测:
在这里插入图片描述

存在问题

有些时候预测不准,尤其是0、8、6;
有大佬希望可以帮忙看看!!万分感谢!

参考资料:
MNSIT:https://zhuanlan.zhihu.com/p/36592188
代码参考:https://blog.csdn.net/woshinierye/article/details/105141631

这篇关于基于tensorflow2、CNN的手写数字识别项目的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/816143

相关文章

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

Java数字转换工具类NumberUtil的使用

《Java数字转换工具类NumberUtil的使用》NumberUtil是一个功能强大的Java工具类,用于处理数字的各种操作,包括数值运算、格式化、随机数生成和数值判断,下面就来介绍一下Number... 目录一、NumberUtil类概述二、主要功能介绍1. 数值运算2. 格式化3. 数值判断4. 随机

配置springboot项目动静分离打包分离lib方式

《配置springboot项目动静分离打包分离lib方式》本文介绍了如何将SpringBoot工程中的静态资源和配置文件分离出来,以减少jar包大小,方便修改配置文件,通过在jar包同级目录创建co... 目录前言1、分离配置文件原理2、pom文件配置3、使用package命令打包4、总结前言默认情况下,

python实现简易SSL的项目实践

《python实现简易SSL的项目实践》本文主要介绍了python实现简易SSL的项目实践,包括CA.py、server.py和client.py三个模块,文中通过示例代码介绍的非常详细,对大家的学习... 目录运行环境运行前准备程序实现与流程说明运行截图代码CA.pyclient.pyserver.py参

IDEA运行spring项目时,控制台未出现的解决方案

《IDEA运行spring项目时,控制台未出现的解决方案》文章总结了在使用IDEA运行代码时,控制台未出现的问题和解决方案,问题可能是由于点击图标或重启IDEA后控制台仍未显示,解决方案提供了解决方法... 目录问题分析解决方案总结问题js使用IDEA,点击运行按钮,运行结束,但控制台未出现http://

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

SpringBoot项目中Maven剔除无用Jar引用的最佳实践

《SpringBoot项目中Maven剔除无用Jar引用的最佳实践》在SpringBoot项目开发中,Maven是最常用的构建工具之一,通过Maven,我们可以轻松地管理项目所需的依赖,而,... 目录1、引言2、Maven 依赖管理的基础概念2.1 什么是 Maven 依赖2.2 Maven 的依赖传递机