【InternLM 笔记】使用InternLM2-chat-1.8b制作时事问答知识库

本文主要是介绍【InternLM 笔记】使用InternLM2-chat-1.8b制作时事问答知识库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

环境版本

模型版本: InternLM2-chat-1.8b

准备环境

还是使用InternStudio进行操作

拉取环境

/root/share/install_conda_env_internlm_base.sh internlm

开始实践

创建工作目录

cd ~
mkdir temp
cd temp

下载模型

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import osmodel_dir = snapshot_download('Shanghai_AI_Laboratory/internlm2-1_8b', cache_dir='/root/model/', revision='master')

复制模型到工作目录

cp -r /root/model/Shanghai_AI_Laboratory/internlm2-1_8b /root/temp

使用XTuner微调模型

微调数据集

党史问答数据集:OpenDataLab 引领AI大模型时代的开放数据平台

数据集csv转json脚本(csv2jsonl.py)

# -*- coding: utf-8 -*-import csv  
import json  # Step 1: Read the CSV file  
with open('data.csv', 'r', encoding='utf-8') as csv_file:  reader = csv.DictReader(csv_file)  data = [row for row in reader]  # Step 2: Extract question and answer columns  
questions = [row['question'] for row in data]  
answers = [row['answer'] for row in data]  # Step 3: Create the JSONL structure  
conversations = []  
for question, answer in zip(questions, answers):  conversation = {  "conversation": [  {  "system": "你是一个专业的中医医师,现在请你给患者开处方' questions.",  "input": question,  "output": answer  }  ]  }  conversations.append(conversation)  # Step 4: Write the JSONL file  
with open('yiyaoduihua.jsonl', 'w', encoding='utf-8') as jsonl_file:  for conversation in conversations:  json.dump(conversation, jsonl_file, ensure_ascii=False)  jsonl_file.write('\n')

执行脚本

python csv2jsonl.py

将得到的jsonl文件拷贝到工作目录下准备微调

安装XTuner

git clone -b v0.1.9  https://github.com/InternLM/xtuner
cd xtuner
pip install -e '.[all]'

准备工作目录

mkdir temp
cd temp# 列出所有内置配置
xtuner list-cfg

复制XTuner配置文件

xtuner copy-cfg internlm2_chat_1_8b_qlora_oasst1_e3 .

修改配置文件

# 修改import部分
- from xtuner.dataset.map_fns import oasst1_map_fn, template_map_fn_factory
+ from xtuner.dataset.map_fns import template_map_fn_factory# 修改模型为本地路径
- pretrained_model_name_or_path = 'internlm/internlm-chat-7b'
+ pretrained_model_name_or_path = './internlm-chat-7b'# 修改训练数据为 MedQA2019-structured-train.jsonl 路径
- data_path = 'timdettmers/openassistant-guanaco'
+ data_path = 'MedQA2019-structured-train.jsonl'# 修改 train_dataset 对象
train_dataset = dict(type=process_hf_dataset,
-   dataset=dict(type=load_dataset, path=data_path),
+   dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)),tokenizer=tokenizer,max_length=max_length,
-   dataset_map_fn=alpaca_map_fn,
+   dataset_map_fn=None,template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),remove_unused_columns=True,shuffle_before_pack=True,pack_to_max_length=pack_to_max_length)

启动微调

xtuner train internlm2_chat_1_8b_qlora_medqa2019_e3.py --deepspeed deepspeed_zero2

将得到的 PTH 模型转换为 HuggingFace 模型,即:生成 Adapter 文件夹

mkdir hf
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_chat_1_8b_qlora_oasst1_e3_copy.py ./work_dirs/internlm2_chat_1_8b_qlora_oasst1_e3_copy/xxx.pth ./hf

将 HuggingFace adapter 合并到大语言模型

xtuner convert merge ./internlm2-chat-1_8b ./hf ./merged --max-shard-size 2GB

使用LangChain构建党史知识库

准备工作

安装依赖

# 升级pip
python -m pip install --upgrade pippip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1

LangChain 依赖包

pip install langchain==0.0.292
pip install gradio==4.4.0
pip install chromadb==0.4.15
pip install sentence-transformers==2.2.2
pip install unstructured==0.10.30
pip install markdown==3.3.7

安装huggingface-cli

pip install -U huggingface_hub

下载sentence-transformer模型

import os# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'# 下载模型
os.system('huggingface-cli download --resume-download --local-dir-use-symlinks False sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/data/model/sentence-transformer')

下载 NLTK 相关资源

cd /root
git clone https://gitee.com/yzy0612/nltk_data.git  --branch gh-pages
cd nltk_data
mv packages/*  ./
cd tokenizers
unzip punkt.zip
cd ../taggers
unzip averaged_perceptron_tagger.zip

知识库搭建

数据集采用了比赛赛题一的数据集中一些内容转化为txt使用

数据集地址: https://openxlab.org.cn/models/detail/OpenLMLab/SMG/

知识库搭建的脚本create_db.py

# 首先导入所需第三方库
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import os# 获取文件路径函数
def get_files(dir_path):# args:dir_path,目标文件夹路径file_list = []for filepath, dirnames, filenames in os.walk(dir_path):# os.walk 函数将递归遍历指定文件夹for filename in filenames:# 通过后缀名判断文件类型是否满足要求if filename.endswith("_CN.md"):# 如果满足要求,将其绝对路径加入到结果列表file_list.append(os.path.join(filepath, filename))elif filename.endswith("_CN.txt"):file_list.append(os.path.join(filepath, filename))return file_list# 加载文件函数
def get_text(dir_path):# args:dir_path,目标文件夹路径# 首先调用上文定义的函数得到目标文件路径列表file_lst = get_files(dir_path)# docs 存放加载之后的纯文本对象docs = []# 遍历所有目标文件for one_file in tqdm(file_lst):file_type = one_file.split('.')[-1]if file_type == 'md':loader = UnstructuredMarkdownLoader(one_file)elif file_type == 'txt':loader = UnstructuredFileLoader(one_file)else:# 如果是不符合条件的文件,直接跳过continuedocs.extend(loader.load())return docs# 目标文件夹
tar_dir = ["/root/data/docs"
]# 加载目标文件
docs = []
for dir_path in tar_dir:docs.extend(get_text(dir_path))# 对文本进行分块
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)# 加载开源词向量模型
embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")# 构建向量数据库
# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(documents=split_docs,embedding=embeddings,persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()

执行

python create_db.py

InternLM 接入 LangChain

脚本

from langchain.llms.base import LLM
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM
import torchclass InternLM_LLM(LLM):# 基于本地 InternLM 自定义 LLM 类tokenizer : AutoTokenizer = Nonemodel: AutoModelForCausalLM = Nonedef __init__(self, model_path :str):# model_path: InternLM 模型路径# 从本地初始化模型super().__init__()print("正在从本地加载模型...")self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(torch.bfloat16).cuda()self.model = self.model.eval()print("完成本地模型的加载")def _call(self, prompt : str, stop: Optional[List[str]] = None,run_manager: Optional[CallbackManagerForLLMRun] = None,**kwargs: Any):# 重写调用函数system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""messages = [(system_prompt, '')]response, history = self.model.chat(self.tokenizer, prompt , history=messages)return response@propertydef _llm_type(self) -> str:return "InternLM"

将上述代码封装为 LLM.py,后续将直接从该文件中引入自定义的 LLM 类。

部署 Web Demo

from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os
from LLM import InternLM_LLM
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQAdef load_chain():# 加载问答链# 定义 Embeddingsembeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")# 向量数据库持久化路径persist_directory = 'data_base/vector_db/chroma'# 加载数据库vectordb = Chroma(persist_directory=persist_directory,  # 允许我们将persist_directory目录保存到磁盘上embedding_function=embeddings)# 加载自定义 LLMllm = InternLM_LLM(model_path = "/root/data/model/Shanghai_AI_Laboratory/internlm-chat-7b")# 定义一个 Prompt Templatetemplate = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。{context}问题: {question}有用的回答:"""QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)# 运行 chainqa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})return qa_chainclass Model_center():"""存储检索问答链的对象 """def __init__(self):# 构造函数,加载检索问答链self.chain = load_chain()def qa_chain_self_answer(self, question: str, chat_history: list = []):"""调用问答链进行回答"""if question == None or len(question) < 1:return "", chat_historytry:chat_history.append((question, self.chain({"query": question})["result"]))# 将问答结果直接附加到问答历史中,Gradio 会将其展示出来return "", chat_historyexcept Exception as e:return e, chat_historyimport gradio as gr# 实例化核心功能对象
model_center = Model_center()
# 创建一个 Web 界面
block = gr.Blocks()
with block as demo:with gr.Row(equal_height=True):   with gr.Column(scale=15):# 展示的页面标题gr.Markdown("""<h1><center>InternLM</center></h1><center>书生浦语</center>""")with gr.Row():with gr.Column(scale=4):# 创建一个聊天机器人对象chatbot = gr.Chatbot(height=450, show_copy_button=True)# 创建一个文本框组件,用于输入 prompt。msg = gr.Textbox(label="Prompt/问题")with gr.Row():# 创建提交按钮。db_wo_his_btn = gr.Button("Chat")with gr.Row():# 创建一个清除按钮,用于清除聊天机器人组件的内容。clear = gr.ClearButton(components=[chatbot], value="Clear console")# 设置按钮的点击事件。当点击时,调用上面定义的 qa_chain_self_answer 函数,并传入用户的消息和聊天历史记录,然后更新文本框和聊天机器人组件。db_wo_his_btn.click(model_center.qa_chain_self_answer, inputs=[msg, chatbot], outputs=[msg, chatbot])gr.Markdown("""提醒:<br>1. 初始化数据库时间可能较长,请耐心等待。2. 使用中如果出现异常,将会在文本输入框进行展示,请不要惊慌。 <br>""")
gr.close_all()
# 直接启动
demo.launch()

通过将上述代码封装为 run_gradio.py 脚本,直接通过 python 命令运行,即可在本地启动知识库助手的 Web Demo,默认会在 7860 端口运行,接下来将服务器端口映射到本地端口即可访问

这篇关于【InternLM 笔记】使用InternLM2-chat-1.8b制作时事问答知识库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/815481

相关文章

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Spring LDAP目录服务的使用示例

《SpringLDAP目录服务的使用示例》本文主要介绍了SpringLDAP目录服务的使用示例... 目录引言一、Spring LDAP基础二、LdapTemplate详解三、LDAP对象映射四、基本LDAP操作4.1 查询操作4.2 添加操作4.3 修改操作4.4 删除操作五、认证与授权六、高级特性与最佳

Qt spdlog日志模块的使用详解

《Qtspdlog日志模块的使用详解》在Qt应用程序开发中,良好的日志系统至关重要,本文将介绍如何使用spdlog1.5.0创建满足以下要求的日志系统,感兴趣的朋友一起看看吧... 目录版本摘要例子logmanager.cpp文件main.cpp文件版本spdlog版本:1.5.0采用1.5.0版本主要

Java中使用Hutool进行AES加密解密的方法举例

《Java中使用Hutool进行AES加密解密的方法举例》AES是一种对称加密,所谓对称加密就是加密与解密使用的秘钥是一个,下面:本文主要介绍Java中使用Hutool进行AES加密解密的相关资料... 目录前言一、Hutool简介与引入1.1 Hutool简介1.2 引入Hutool二、AES加密解密基础