【考研数学】高等数学总结

2024-03-16 12:20

本文主要是介绍【考研数学】高等数学总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 第一章 极限 函数 连续
    • 1.1 极限存在准则及两个重要极限
      • 1.1.1 夹逼定理
        • 1.1.1.1 数列夹逼定理
        • 1.1.1.2函数夹逼定理
      • 1.1.2 两个重要极限
        • 1.1.2.1 极限公式1
          • 1.1.2.1.1 证明
          • 1.1.2.1.2 数列的单调有界收敛准则
            • 1.1.2.1.2.1 二项式定理
            • 1.1.2.1.2.2 证明
        • 1.1.2.2 极限公式2
          • 1.1.2.2.1 证明(与1.2.1.2数列单调有界收敛准则对应)
    • 1.2 无穷大与无穷小
      • 1.2.1 概念
        • 1.2.1.1 无穷小的概念
        • 1.2.1.2 无穷大的概念
        • 1.2.1.3 无穷小阶的概念


这样记没任何用处,还很浪费时间,但是这样删了太可惜了,反正没人看,就随便发发,不完整的

第一章 极限 函数 连续

1.1 极限存在准则及两个重要极限

1.1.1 夹逼定理

1.1.1.1 数列夹逼定理

如果数列 { X n } \{X_n\} {Xn} , { Y n } \{Y_n\} {Yn} { Z n } \{Z_n\} {Zn} 满足下列条件:
(1)当 n > N 0 n>N_0 n>N0 时,其中 N 0 ∈ N ∗ N_0\in N^* N0N,有 Y n ≤ X n ≤ Z n Y_n\leq X_n\leq Z_n YnXnZn .
(2) { Y n } \{Y_n\} {Yn} { Z n } \{Z_n\} {Zn} 有相同的极限 a a a ,设 − ∞ < a < + ∞ -\infty<a<+\infty <a<+ , 则,数列 { X n } \{X_n\} {Xn} 的极限存在,且 lim ⁡ n → ∞ X n = a \lim_{n\to\infty}X_n=a limnXn=a .

证明:因为 lim ⁡ n → ∞ Y n = a \lim_{n\to\infty}Y_n=a limnYn=a , lim ⁡ n → ∞ Z n = a \lim_{n\to\infty}Z_n=a limnZn=a ,所以根据数列极限的定义,对于任意给定的正数 ε \varepsilon ε ,存在正整数 N 1 N_1 N1 N 2 N_2 N2 ,当 n > N 1 n>N_1 n>N1时,有 ∣ Y n − a ∣ < ε |Y_n-a|<\varepsilon Yna<ε,当 n > N 2 n>N_2 n>N2 时,有 ∣ Z n − a ∣ < ε |Z_n-a|<\varepsilon Zna<ε,取 n = m a x { N 0 , N 1 , N 2 } n=max\left\{N_0,N_1,N_2\right\} n=max{N0,N1,N2},则当 n > N n>N n>N 时, ∣ Y n − a ∣ < ε |Y_n-a|<\varepsilon Yna<ε ∣ Z n − a ∣ < ε |Z_n-a|<\varepsilon Zna<ε 同时成立,且 Y n ≤ X n ≤ Z n Y_n\leq X_n\leq Z_n YnXnZn ,即 a − ε < Y n < a + ε a-\varepsilon<Y_n<a+\varepsilon aε<Yn<a+ε , a − ε < Z n < a + ε a-\varepsilon<Z_n<a+\varepsilon aε<Zn<a+ε ,又因为 a − ε < Y n ≤ X n ≤ Z n < a + ε a-\varepsilon<Y_n\leq X_n\leq Z_n<a+\varepsilon aε<YnXnZn<a+ε ,即 ∣ X n − a ∣ < ε |X_n-a|<\varepsilon Xna<ε 成立。也就是说 lim ⁡ n → ∞ X n = a n \lim_{n\to\infty}X_n=a_n limnXn=an

https://blog.csdn.netLaoYuanPython

1.1.1.2函数夹逼定理

f ( x ) f(x) f(x) g ( x ) g(x) g(x)在xO处连续且存在相同的极限A,即 x → x x\to x xxO时,lim f(x)=lim g ( x ) = A g(x)=\mathbb{A} g(x)=A,则若有函数K(x)在x0 的某邻域内(如 x 0 ∈ ( x 1 , x 2 ) x0\in(x1,x2) x0(x1,x2)),恒有f(x)sk(x)sg(x),则当X趋近x0时,有lim f(x)slim k(x)slim g(x), 即Aslim k(x)sA
故lim k(x)=A。
简单地说:函数A>B,函数B>C,函数A的极限是X,函数C的极限也是X ,那么函数B的极限就一定是X,这个 就是夹逼定理。

1.1.2 两个重要极限

1.1.2.1 极限公式1

lim ⁡ x → 0 sin ⁡ x x = 1 \lim_{x\to0}\frac{\sin x}x=1 x0limxsinx=1
使用该公式时注意它的使用条件。一定是对 0 0 这样的函数形式求极限 使用该公式时注意它的使用条件。一定是对 \frac00 这样的函数形式求极限 使用该公式时注意它的使用条件。一定是对00这样的函数形式求极限

1.1.2.1.1 证明

在这里插入图片描述
在该圆里,半径为1,OC为X,AC为Y,
则sinθ=y/r=y,tanθ=Y/X=BD/OB=BD,弧AB的长=θ * 2πr/360 =θ * 2π/360 =θ
扇形的面积公式为lr/2=θ

1.S△OBD>S扇OAB>S△OAB=tanθ/2>θ/2>sinθ/2
2.tanθ > θ > sinθ = tanθ/sinθ > θ/sinθ > 1 = 1/cosθ>θ / sinθ > 1,在θ趋于0时cossθ的极限值为1,因此1/cosθ极限值为1,根据夹逼定理θ / sinθ的极限值为1。

1.1.2.1.2 数列的单调有界收敛准则
1.1.2.1.2.1 二项式定理

1.二项式定理的内容
( a + b ) n = C n 0 a n + C n 1 a n − 1 b + ⋯ + C n k a n − k b k + ⋯ + C n n b n (a+b)^{n}=C_{n}^{0}a^{n}+C_{n}^{1}a^{n-1}b+\cdots+C_{n}^{k}a^{n-k}b^{k}+\cdots+C_{n}^{n}b^{n} (a+b)n=Cn0an+Cn1an1b++Cnkankbk++Cnnbn
右边多项式叫(a+b)^n的二项展开式;
2.二项式系数 : C n 0 , C n 1 , C n 2 , . . . C n r , . . . C n n :C_n^0,C_n^1,C_n^2,...C_n^r,...C_n^n :Cn0,Cn1,Cn2,...Cnr,...Cnn
3,二项展开式的通项 T k + 1 = C n k a n − k b k T_{k+1}=C_n^ka^{n-k}b^k Tk+1=Cnkankbk
(b+a)^n, (a-b)^n的通项则分别为: T k + 1 = C n k b n − k a k ; T k + 1 = C n k a n − k ( − b ) k T_{k+1}=C_{n}^{k}b^{n-k}a^{k};T_{k+1}=C_{n}^{k}a^{n-k}\left(-b\right)^{k} Tk+1=Cnkbnkak;Tk+1=Cnkank(b)k
4.在定理中,令 a = 1 , b = x a=1,b=x a=1,b=x,则
( 1 + x ) n = C n 0 + C n 1 x + C n 2 x 2 + ⋯ + C n r x r + ⋯ + C n n x n \left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+\cdots+C_n^rx^r+\cdots+C_n^nx^n (1+x)n=Cn0+Cn1x+Cn2x2++Cnrxr++Cnnxn

1.1.2.1.2.2 证明

证明  a n = ( 1 + 1 n ) n 收敛 . \text{证明 }a_n=(1+\frac1n)^n\text{ 收敛}. 证明 an=(1+n1)n 收敛.

证明 a n = ( 1 + 1 n ) n 收敛 . 证 a n = 1 + 1 + n ( n − 1 ) 2 ! ⋅ 1 n 2 + ⋯ + n ( n − 1 ) ⋯ ( n − k + 1 ) k ! ⋅ 1 n k + ⋯ + n ( n − 1 ) ⋯ 2 ⋅ 1 n ! ⋅ 1 n n = 1 + 1 + 1 2 ! ( 1 − 1 n ) + ⋯ + 1 k ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − k − 1 n ) + ⋯ + 1 n ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − n − 1 n ) ∴ a n < a n + 1 , a n 单调增 . \begin{aligned} &&& \text{证明}a_n=(1+\frac1n)^n\text{ 收敛}. \\ &&& \text{证}\quad a_n=1+1+\frac{n(n-1)}{2!}\cdot\frac1{n^2}+\cdots+\frac{n(n-1)\cdots(n-k+1)}{k!}\cdot\frac1{n^k} \\ &&&+\cdots+\frac{n(n-1)\cdots2\cdot1}{n!}\cdot\frac1{n^n} \\ &&&=1+1+\frac1{2!}{\left(1-\frac1n\right)}+\cdots+\frac1{k!}{\left(1-\frac1n\right)}{\left(1-\frac2n\right)}\cdots{\left(1-\frac{k-1}n\right)} \\ &&&+\cdots+\frac1{n!}\left(1-\frac1n\right)\left(1-\frac2n\right)\cdots\left(1-\frac{n-1}n\right) \\ &&&\therefore a_n<a_{n+1},\quad a_n\text{ 单调增}. \end{aligned} 证明an=(1+n1)n 收敛.an=1+1+2!n(n1)n21++k!n(n1)(nk+1)nk1++n!n(n1)21nn1=1+1+2!1(1n1)++k!1(1n1)(1n2)(1nk1)++n!1(1n1)(1n2)(1nn1)an<an+1,an 单调增.
又 a n < 1 + 1 + 1 2 ! + 1 3 ! + ⋯ + 1 k ! + ⋯ + 1 n ! < 1 + 1 + 1 2 + 1 2 2 + ⋯ + 1 2 n − 1 = 1 + 1 − 1 2 n 1 − 1 2 < 1 + 1 1 − 1 2 = 3 ∴ a 有界 . 记作 lim ⁡ n → ∞ ( 1 + 1 n ) n = e 0<e<3  \begin{aligned} &又a_{n}&& <1+1+\frac1{2!}+\frac1{3!}+\cdots+\frac1{k!}+\cdots+\frac1{n!} \\ &&&<1+1+\frac12+\frac1{2^2}+\cdots+\frac1{2^{n-1}}=1+\frac{1-\frac1{2^n}}{1-\frac12}<1+\frac1{1-\frac12}=3\\ &\therefore a{有界}. \\ &\text{记作}\boxed{\lim_{n\to\infty}(1+\frac1n)^n=e}\text{0<e<3}\ \end{aligned} ana有界.记作nlim(1+n1)n=e0<e<3 <1+1+2!1+3!1++k!1++n!1<1+1+21+221++2n11=1+12112n1<1+1211=3

1.1.2.2 极限公式2

lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim\limits_{x\to\infty}(1+\frac{1}{x})^x=e xlim(1+x1)x=e
变式

lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim_{x\to0}(1+x)^{\frac1x}=e x0lim(1+x)x1=e

1.1.2.2.1 证明(与1.2.1.2数列单调有界收敛准则对应)

证明:首先证明此极限存在
构造数列 x n = ( 1 + 1 n ) n x_n=\left(1+\frac1n\right)^n xn=(1+n1)n

x n = 1 + C n 1 1 n + C n 2 1 n 2 + C n 3 1 n 3 + … + C n n 1 n n = 1 + n ⋅ 1 n + n ( n − 1 ) 2 ! ⋅ 1 n 2 + n ( n − 1 ) ( n − 2 ) 3 ! ⋅ 1 n 3 + ⋯ + n ( n − 1 ) ( n − 2 ) ⋅ ⋅ ⋅ 1 n ! ⋅ 1 n n = 1 + 1 + 1 2 ! ⋅ ( 1 − 1 n ) + 1 3 ! ⋅ ( 1 − 1 n ) ( 1 − 2 n ) + ⋯ + 1 n ! ⋅ ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − n − 1 n ) < 2 + 1 2 ! + 1 3 ! + ⋯ + 1 n ! < 2 + 1 2 + 1 2 2 + ⋯ + + 1 2 n − 1 = 3 − 1 2 n − 1 <3 \begin{aligned} x_{n}& =1+C_n^1\frac1n+C_n^2\frac1{n^2}+C_n^3\frac1{n^3}+\ldots+C_n^n\frac1{n^n} \\ &=1+n\cdot\frac1n+\frac{n(n-1)}{2!}\cdot\frac1{n^2}+\frac{n(n-1)(n-2)}{3!}\cdot\frac1{n^3}+\cdots+\frac{n(n-1)(n-2)\cdotp\cdotp\cdotp1}{n!}\cdot\frac1{n^n} \\ &=1+1+\frac1{2!}\cdot\left(1-\frac1n\right)+\frac1{3!}\cdot\left(1-\frac1n\right)\left(1-\frac2n\right)+\cdots+\frac1{n!}\cdot\left(1-\frac1n\right)\left(1-\frac2n\right) \\ \cdots\left(1-\right.& \left.\frac{n-1}n\right) \\ &<2+\frac1{2!}+\frac1{3!}+\cdots+\frac1{n!} \\ &<2+\frac12+\frac1{2^2}+\cdots++\frac1{2^{n-1}} \\ &=3-\frac1{2^{n-1}} \\ &\text{<3} \end{aligned} xn(1=1+Cn1n1+Cn2n21+Cn3n31++Cnnnn1=1+nn1+2!n(n1)n21+3!n(n1)(n2)n31++n!n(n1)(n2)⋅⋅⋅1nn1=1+1+2!1(1n1)+3!1(1n1)(1n2)++n!1(1n1)(1n2)nn1)<2+2!1+3!1++n!1<2+21+221+++2n11=32n11<3
而对于n+1

x n + 1 = ( 1 + 1 n + 1 ) n + 1 = 1 + 1 + 1 2 ! ⋅ ( 1 − 1 n + 1 ) + 1 3 ! ⋅ ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) + ⋯ + 1 n ! ⋅ ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) ⋅ ⋅ ⋅ ( 1 − n − 1 n + 1 ) + 1 ( n + 1 ) ! ⋅ ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) ⋯ ( 1 − n − 1 n + 1 ) ( 1 − n n + 1 ) > x n \begin{aligned} x_{n+1}& =\left(1+\frac1{n+1}\right)^{n+1} \\ &=1+1+\frac1{2!}\cdot\left(1-\frac1{n+1}\right)+\frac1{3!}\cdot\left(1-\frac1{n+1}\right)\left(1-\frac2{n+1}\right)+\cdots+ \\ &\frac1{n!}\cdot\left(1-\frac1{n+1}\right)\left(1-\frac2{n+1}\right)\cdot\cdot\cdot\left(1-\frac{n-1}{n+1}\right)+ \\ &\frac1{(n+1)!}\cdot\left(1-\frac1{n+1}\right)\left(1-\frac2{n+1}\right)\cdots\left(1-\frac{n-1}{n+1}\right)\left(1-\frac n{n+1}\right) \\ &\text{>}x_{n} \end{aligned} xn+1=(1+n+11)n+1=1+1+2!1(1n+11)+3!1(1n+11)(1n+12)++n!1(1n+11)(1n+12)(1n+1n1)+(n+1)!1(1n+11)(1n+12)(1n+1n1)(1n+1n)>xn

由单调有界数列必有极限可知,数列 x n = ( 1 + 1 n ) n x_n=\left(1+\frac1n\right)^n xn=(1+n1)n的极限一定存在。记此极限为 e e e
对于实数 x x x ,则总存在整数 n n n ,使得 n ⩽ x ⩽ n + 1 n\leqslant x\leqslant n+1 nxn+1

则有 ( 1 + 1 n + 1 ) n < ( 1 + 1 x ) x < ( 1 + 1 n ) n + 1 \text{则有}\left(1+\frac{1}{n+1}\right)^n<\left(1+\frac{1}{x}\right)^x<\left(1+\frac{1}{n}\right)^{n+1} 则有(1+n+11)n<(1+x1)x<(1+n1)n+1

lim ⁡ n → ∞ ( 1 + 1 n + 1 ) n = lim ⁡ n → ∞ ( 1 + 1 n + 1 ) n + 1 ( 1 + 1 n + 1 ) = lim ⁡ x → ∞ ( 1 + 1 n + 1 ) n + 1 lim ⁡ x → ∞ ( 1 + 1 n + 1 ) \lim_{n\to\infty}\left(1+\frac1{n+1}\right)^n=\lim_{n\to\infty}\frac{\left(1+\frac1{n+1}\right)^{n+1}}{\left(1+\frac1{n+1}\right)}=\frac{\lim_{x\to\infty}\left(1+\frac1{n+1}\right)^{n+1}}{\lim_{x\to\infty}\left(1+\frac1{n+1}\right)} nlim(1+n+11)n=nlim(1+n+11)(1+n+11)n+1=limx(1+n+11)limx(1+n+11)n+1

= e 1 + 0 = e =\frac e{1+0}=e =1+0e=e

lim ⁡ n → ∞ ( 1 + 1 n ) n + 1 = lim ⁡ n → ∞ ( ( 1 + 1 n ) n ( 1 + 1 n ) ) \lim_{n\to\infty}\left(1+\frac1n\right)^{n+1}=\lim_{n\to\infty}\left(\left(1+\frac1n\right)^n\left(1+\frac1n\right)\right) limn(1+n1)n+1=limn((1+n1)n(1+n1))

= lim ⁡ n → ∞ ( 1 + 1 n ) n lim ⁡ n → ∞ ( 1 + 1 n ) = e ⋅ ( 1 + 0 ) = e \begin{aligned} &=\lim_{n\to\infty}\left(1+\frac1n\right)^n\lim_{n\to\infty}\left(1+\frac1n\right) \\ &=e\cdot(1+0) \\ &=e \end{aligned} =nlim(1+n1)nnlim(1+n1)=e(1+0)=e
根据两边夹定理,函数 f ( x ) = lim ⁡ x → ∞ ( 1 + 1 x ) x f(x)=\lim_{x\to\infty}\left(1+\frac1x\right)^x f(x)=limx(1+x1)x的极限存在,为e

1.2 无穷大与无穷小

1.2.1 概念

1.2.1.1 无穷小的概念

若 lim ⁡ x → x 0 f ( x ) = 0 , 则称 f ( x ) 为 x → x 0 时的无穷小量 ( 或无穷小 ) . 记作  α ( x ) , β ( x ) 等 . \begin{aligned}&\text{若}\lim_{x\to x_0}f\left(x\right)=0,\text{则称}f\left(x\right)\text{为}x\to x_0\text{时的无穷小量}\left(\text{或无穷小}\right).\\&\text{记作 }\alpha(x),\beta(x)\text{等}.\end{aligned} xx0limf(x)=0,则称f(x)xx0时的无穷小量(或无穷小).记作 α(x),β(x).
定理1: lim ⁡ x → x 0 f ( x ) = A ⇔ f ( x ) = A + α ( x ) \lim_{x\to x_0}f(x)=A\Leftrightarrow f(x)=A+\alpha(x) limxx0f(x)=Af(x)=A+α(x)
定理2:

  1. 有限个无穷小的和为无穷小
  2. 有限个无穷小的积为无穷小
  3. 无穷小与有界函数的积仍为无穷小
1.2.1.2 无穷大的概念

f ( x ) f(x) f(x) x 0 x_{0} x0某去心邻域 U ˚ ( x 0 ) \mathring{U}(x_{0}) U˚(x0)有定义, ∀ > 0 , ∃ δ > 0 \forall >0,\exists\delta>0 >0,δ>0,当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ 时, ∣ f ( x ) ∣ > M . |f(x)|>M. f(x)>M. 则称 f ( x ) f(x) f(x) x → x 0 x\to x_0 xx0时的
无穷大量(或无穷大).
记作 lim x → x 0 x\to x_{0} xx0 f ( x ) = ∞ f(x)=\infty f(x)=
定理:

  1. 无穷大的积仍为无穷大
  2. 无穷大的和不一定为无穷大
1.2.1.3 无穷小阶的概念

定义3 (无穷小的阶) 设 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x) 是自变量 x 在同一变化趋势下的两个无穷小,且 β ( x ) ≠ 0 \beta(x)\neq0 β(x)=0

(1) 若lim α ( x ) β ( x ) = 0 \frac{\alpha(x)}{\beta(x)}=0 β(x)α(x)=0,则称 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x) 的高阶无穷小,记作 α ( x ) = o [ β ( x ) ] \alpha(x)=o\left[\beta(x)\right] α(x)=o[β(x)]
(2) 若 lim α ( x ) β ( x ) = C ≠ 0 \frac{\alpha(x)}{\beta(x)}=C\neq0 β(x)α(x)=C=0,则称 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x) 为同阶无穷小;
(3)若 lim α ( x ) β ( x ) = 1 \frac{\alpha(x)}{\beta(x)}=1 β(x)α(x)=1,则称 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x)为等价无穷小,记作 α ( x ) ∼ β ( x ) ; \alpha(x)\sim\beta(x); α(x)β(x); (3)若lim .
(4)若 lim ⁡ [ 0 , 0 , 1 ] α ( x ) ( x − ) k = C ≠ 0 , ( k > 0 ) \lim_{[0,0,1]}\frac{\alpha(x)}{(x-)^k}=C\neq0,\quad(k>0) lim[0,0,1](x)kα(x)=C=0,(k>0),则称 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x) k k k 阶无穷小.

这篇关于【考研数学】高等数学总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/815477

相关文章

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

Java向kettle8.0传递参数的方式总结

《Java向kettle8.0传递参数的方式总结》介绍了如何在Kettle中传递参数到转换和作业中,包括设置全局properties、使用TransMeta和JobMeta的parameterValu... 目录1.传递参数到转换中2.传递参数到作业中总结1.传递参数到转换中1.1. 通过设置Trans的

C# Task Cancellation使用总结

《C#TaskCancellation使用总结》本文主要介绍了在使用CancellationTokenSource取消任务时的行为,以及如何使用Task的ContinueWith方法来处理任务的延... 目录C# Task Cancellation总结1、调用cancellationTokenSource.

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的