基于正点原子潘多拉STM32L496开发板的简易示波器

2024-03-15 20:28

本文主要是介绍基于正点原子潘多拉STM32L496开发板的简易示波器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

        由于需要对ADC采样性能的评估,重点在于对原波形的拟合性能。

        考虑到数据的直观性,本来计划采集后使用串口导出,并用图形做数据拟合,但是这样做的效率低下,不符合实时观察的需要,于是将开发板的屏幕用作波形模拟展示,虽然精度有所丢失,但是波形没有太大变形,有一定参考价值。

        目前开发板的版本是V3.4,主控STM32L496VET6。选择该主控的原因是adc部分的时钟是独立且可以调整的,F1和F4系列的时钟频率相对较低,最高36Mhz。

        L496可以到80Mhz,最大精度下采样率能够达到5.33Mhz,可以很大程度提高实验要求的实时性。

二、设计思路

        设计的关键在于ADC的采集方式和LCD的显示方式。

1、ADC配置

        在官方例程的框架基础上做了一些修改:

例程用的2倍分频,所以ADC时钟为40MHz,我改为了1分频,达到80MHz。其他根据自己需要修改。

通道配置部分,例程是放在了测量的时候配置,由于实时采集需要高频调用,于是我把这部分放到了初始化中,只保留了必须的部分:

例程为了可以实现任意通道的采样,所以在测量时才配置对应通道。但是要注意,初始化函数只对一个引脚做了配置,如果要测量其他通道还需要自行配置其他引脚。

时钟源可以参考CubeMX生成的代码,有多种组合方式,这里我采用最简单的,挂在系统时钟上:

2、定时器配置

       定时器就是正常配置为计数,开启溢出中断,没有使用其他功能。

        这部分没有采用定时器内置的触发ADC检测,我使用更为简单的标志位,这样便于调试和查错:

        count是测量计数,tim_flag是定时器溢出标志,用于主函数启动ADC采样。

3、led显示配置

这部分参考另一位博主的设计思路,在屏幕上建立坐标系,建立网格线:

        所有用于显示的函数都是使用官方的LCD驱动代码,要做的就是调整显示区域和颜色。

4、波形绘制

        最重要的就是波形模拟,这部分的主要思路是采集230次为一组,就是要显示的像素宽度,将每一次采集的数据保存,然后暂停定时器,处理数据,将模拟量转为电压值,找到最大最小值,刷新到屏幕,每两个相邻点之间连线,最后将计数值清零,开启定时器。

        描述的比较硬核,看代码就明白了:

if(count >= LCD_Width - 10)//如果显示的个数达到要求
{HAL_TIM_Base_Stop_IT(&TIM3_Handler);//定时器暂时关闭,先处理数据Display_Voltage_Net();	max = D_arr[0] * 3300 / 4096;min = D_arr[0] * 3300 / 4096;for(count = 0; count < LCD_Width - 10; count++)//进行最大值和最小值等处理{D_arr[count] = D_arr[count] * 3300 / 4096;//模拟量换成数字量电压,1mV为量度 if(D_arr[count] > max){max = D_arr[count];}if(D_arr[count] < min){min = D_arr[count];}}//最大值和最小值显示POINT_COLOR = BLACK;//设置画笔为黑色LCD_ShowString(0, 15, 20, 12, 12, "max");LCD_ShowNum(0, 27, max, 4, 12);LCD_ShowString(0, LCD_Height - 30 - 12, 20, 12, 12, "min");LCD_ShowNum(0, LCD_Height - 30, min, 4, 12);//显示处理for(count = 0; count < LCD_Width - 10; count++){D_arr[count] = D_arr[count] / 3300 * (LCD_Height - 20);//显示范围}//数据显示在LCD上for(count = 10; count < LCD_Width - 11; count++){//LCD_DrawLine(count + 10, LCD_Height - 10 - D_arr[count], count + 11, LCD_Height - 10 - D_arr[count + 1]);LCD_DrawLine(count, LCD_Height - 10 - D_arr[count], count + 1, LCD_Height - 10 - D_arr[count + 1]);}count = 0;//重新进行数据获取delay_ms(1000);HAL_TIM_Base_Start_IT(&TIM3_Handler);//定时器重新启动
}

三、实验结果

        根据本次实验的设计方式,实测定时器最快只能设置10微妙定时,更小的话会采样乱码,目前还没找到原因。

TIM3_Init(10 - 1, 80 - 1);//定时器3初始化 10us

        自动装载值为10,预分频80。也就是屏幕每一帧显示范围10us * 220  = 2.2毫秒,周期在该范围内的都能正常显示一帧,在频率为10khz时,波形较密集,应该是能看清的最高频率。

        读者可根据需要调整定时器的配置,低于10khz的方波都可以较清晰的模拟出来。

源码已上传至Gitee:

stm32: 一些stm32模块使用经验记录 - Gitee.comicon-default.png?t=N7T8https://gitee.com/lrf1125962926/stm32/tree/Waveform_simulation/

这篇关于基于正点原子潘多拉STM32L496开发板的简易示波器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/813173

相关文章

Lua 脚本在 Redis 中执行时的原子性以及与redis的事务的区别

在 Redis 中,Lua 脚本具有原子性是因为 Redis 保证在执行脚本时,脚本中的所有操作都会被当作一个不可分割的整体。具体来说,Redis 使用单线程的执行模型来处理命令,因此当 Lua 脚本在 Redis 中执行时,不会有其他命令打断脚本的执行过程。脚本中的所有操作都将连续执行,直到脚本执行完成后,Redis 才会继续处理其他客户端的请求。 Lua 脚本在 Redis 中原子性的原因

开发板NFS挂载文件目录

文章目录 序NFS1. 安装 NFS 服务器和客户端在服务器上(NFS 服务器端)在客户端上(NFS 客户端) 2. 配置 NFS 服务器创建共享目录编辑 `/etc/exports` 文件启动 NFS 服务 3. 在客户端挂载 NFS 共享创建挂载点挂载 NFS 共享验证挂载 4. 设置开机自动挂载5. 解决权限问题 序 本节主要实现虚拟机(服务器)与开发板(客户端)通过N

海龟绘图简易教程|Turtle for Python

turtle 是 python 内置的一个比较有趣味的模块,俗称 海龟绘图,它是基于 tkinter 模块打造,提供一些简单的绘图工具,海龟作图最初源自 20 世纪 60 年代的 Logo 编程语言,之后一些很酷的 Python 程序员构建了 turtle 库,让其他程序员只需要 import turtle,就可以在 Python 中使用海龟作图。 原文链接|海龟绘图简易教程 1. 基本

使用jetty和mongodb做个简易文件系统

使用jetty和mongodb做个简易文件系统 - ciaos 时间 2014-03-09 21:21:00   博客园-所有随笔区 原文   http://www.cnblogs.com/ciaos/p/3590662.html 主题  MongoDB  Jetty  文件系统 依赖库: 1,jetty(提供http方式接口) 2,mongodb的java驱动(访问mo

安卓开发板_联发科MTK开发评估套件串口调试

串口调试 如果正在进行lk(little kernel ) 或内核开发,USB 串口适配器( USB 转串口 TTL 适配器的简称)对于检查系统启动日志非常有用,特别是在没有图形桌面显示的情况下。 1.选购适配器 常用的许多 USB 转串口的适配器,按芯片来分,有以下几种: CH340PL2303CP2104FT232 一般来说,采用 CH340 芯片的适配器,性能比较稳定,价

HarmonyOS】ArkTS学习之基于TextTimer的简易计时器的elapsedTime最小时间单位问题

本文旨在纪录自己对TextTimer使用过程的疑惑问题 我在查看教程时候,发现很多博客在onTimer(event: (utc: number, elapsedTime: number) => void) 这里提到elapsedTime:计时器经过的时间,单位为毫秒。我不清楚是否为版本问题。 在我查看version11和version10的api时候,说的都是设置格式的最小单位。 经过个人检验的

Redis 篇-深入了解基于 Redis 实现分布式锁(解决多线程安全问题、锁误删问题和确保锁的原子性问题)

🔥博客主页: 【小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍ 文章目录         1.0 分布式锁概述         1.1 Redis 分布式锁实现思路         1.2 实现基本的分布式锁         2.0 Redis 分布式锁误删问题         2.1 解决 Redis 分布式锁误删问题         3.0 Redis 分

多线程篇(并发相关类- 原子操作类)(持续更新迭代)

目录 前言 一、原子变量操作类(AtomicLong为例) 1. 前言 2. 实例 二、JDK 8新增的原子操作类LongAdder 三、LongAccumulator类原理探究 前言 JUC包提供了一系列的原子性操作类,这些类都是使用非阻塞算法CAS实现的,相比使用锁实现原子性操作这在性能上有很大提高。 由于原子性操作类的原理都大致相同,这里讲解最简单的AtomicLo

【Java编程的逻辑】原子变量 CAS 显示锁

原子变量 在理解synchronized中有使用synchronized保证原子更新操作,但是使用synchronized成本太高了,需要先获取锁,最后还要释放锁,如果获取不到锁还需要等到。这些成本都是比较高的,对于这种情况,可以使用原子变量。 Java并发包中的基本原子变量类型有以下几种: AtomicBoolean:原子Boolean类型,常用来在程序中表示一个标志位 AtomicIn

正点原子阿尔法ARM开发板-IMX6ULL(二)——介绍情况以及汇编

文章目录 一、裸机开发(21个)二、嵌入式Linux驱动例程三、汇编3.1 处理器内部数据传输指令3.2 存储器访问指令3.3 压栈和出栈指令3.4 跳转指令3.5 算术运算指令3.6 逻辑运算指令 一、裸机开发(21个) 二、嵌入式Linux驱动例程 三、汇编 我们在进行嵌入式 Linux 开发的时候是绝对要掌握基本的 ARM 汇编,因为 Cortex-A 芯片一