[python]bokeh学习总结——bokeh.layouts

2024-03-15 15:08

本文主要是介绍[python]bokeh学习总结——bokeh.layouts,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果希望在同一张图上显示多个图像,可以使用bokeh.layouts类中的方法:

  • row()
  • column()
  • gridplot()
  • widgetbox()
  • layout()

row()

row()的作用是将多个图像以行的方式放到同一张图中。

from bokeh.io import output_file, show
from bokeh.layouts import row
from bokeh.plotting import figureoutput_file("layout.html")x = list(range(11))
y0 = x
y1 = [10 - i for i in x]
y2 = [abs(i - 5) for i in x]# create a new plot
s1 = figure(plot_width=250, plot_height=250, title=None)
s1.circle(x, y0, size=10, color="navy", alpha=0.5)# create another one
s2 = figure(plot_width=250, plot_height=250, title=None)
s2.triangle(x, y1, size=10, color="firebrick", alpha=0.5)# create and another
s3 = figure(plot_width=250, plot_height=250, title=None)
s3.square(x, y2, size=10, color="olive", alpha=0.5)# put the results in a row
show(row(s1, s2, s3))

column()

column()的作用是将多个图像以列的方式放到同一张图像中。

from bokeh.io import output_file, show
from bokeh.layouts import column
from bokeh.plotting import figureoutput_file("layout.html")x = list(range(11))
y0 = x
y1 = [10 - i for i in x]
y2 = [abs(i - 5) for i in x]# create a new plot
s1 = figure(plot_width=250, plot_height=250, title=None)
s1.circle(x, y0, size=10, color="navy", alpha=0.5)# create another one
s2 = figure(plot_width=250, plot_height=250, title=None)
s2.triangle(x, y1, size=10, color="firebrick", alpha=0.5)# create and another
s3 = figure(plot_width=250, plot_height=250, title=None)
s3.square(x, y2, size=10, color="olive", alpha=0.5)# put the results in a column and show
show(column(s1, s2, s3))

gridplot()

如果希望以矩阵的方式将多个图像放到同一张图上,可以使用gridplot()函数,如果某个位置的图像为空,可以设定为None。

from bokeh.io import output_file, show
from bokeh.layouts import gridplot
from bokeh.palettes import Viridis3
from bokeh.plotting import figureoutput_file("layout_grid.html")x = list(range(11))
y0 = x
y1 = [10 - i for i in x]
y2 = [abs(i - 5) for i in x]# create three plots
p1 = figure(plot_width=250, plot_height=250, title=None)
p1.circle(x, y0, size=10, color=Viridis3[0])
p2 = figure(plot_width=250, plot_height=250, title=None)
p2.triangle(x, y1, size=10, color=Viridis3[1])
p3 = figure(plot_width=250, plot_height=250, title=None)
p3.square(x, y2, size=10, color=Viridis3[2])# make a grid
grid = gridplot([[p1, p2], [None, p3]])# show the results
show(grid)

要注意的是,gridplot()函数只能接受figure类,不能接受widget类,如果希望一张图像中既有figure类也有widget类,就需要用layout()方法。文档中关于gridplot()的介绍如下,可以看到输入参数只能是Plot类,即figure类:


widgetbox()

如果希望在图像中插入widgets(小部件),可以使用widgetbox()函数。

from bokeh.io import output_file, show
from bokeh.layouts import widgetbox
from bokeh.models.widgets import Button, RadioButtonGroup, Select, Slideroutput_file("layout_widgets.html")# create some widgets
slider = Slider(start=0, end=10, value=1, step=.1, title="Slider")
button_group = RadioButtonGroup(labels=["Option 1", "Option 2", "Option 3"], active=0)
select = Select(title="Option:", value="foo", options=["foo", "bar", "baz", "quux"])
button_1 = Button(label="Button 1")
button_2 = Button(label="Button 2")# put the results in a row
show(widgetbox(button_1, slider, button_group, select, button_2, width=300))

layout()

layout()函数的作用有两个:

  1. 将多个图像按照矩阵样式摆放到同一张图中
  2. 输入参数可以是Plot, Widget, WidgetBox, Row, Column, ToolbarBox, Spacer,不仅限于Plot类

官网文档中的介绍如下:


来自github中的一个例子如下:

import numpy as npfrom bokeh.layouts import layout
from bokeh.models import CustomJS, Slider, ColumnDataSource, WidgetBox
from bokeh.plotting import figure, output_file, showoutput_file('dashboard.html')tools = 'pan'def bollinger():# Define Bollinger Bands.upperband = np.random.random_integers(100, 150, size=100)lowerband = upperband - 100x_data = np.arange(1, 101)# Bollinger shading glyph:band_x = np.append(x_data, x_data[::-1])band_y = np.append(lowerband, upperband[::-1])p = figure(x_axis_type='datetime', tools=tools)p.patch(band_x, band_y, color='#7570B3', fill_alpha=0.2)p.title.text = 'Bollinger Bands'p.title_location = 'left'p.title.align = 'left'p.plot_height = 600p.plot_width = 800p.grid.grid_line_alpha = 0.4return [p]def slider():x = np.linspace(0, 10, 100)y = np.sin(x)source = ColumnDataSource(data=dict(x=x, y=y))plot = figure(y_range=(-10, 10), tools='', toolbar_location=None,title="Sliders example")plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6)callback = CustomJS(args=dict(source=source), code="""var data = source.data;var A = amp.value;var k = freq.value;var phi = phase.value;var B = offset.value;var x = data['x']var y = data['y']for (var i = 0; i < x.length; i++) {y[i] = B + A*Math.sin(k*x[i]+phi);}source.change.emit();""")amp_slider = Slider(start=0.1, end=10, value=1, step=.1, title="Amplitude", callback=callback, callback_policy='mouseup')callback.args["amp"] = amp_sliderfreq_slider = Slider(start=0.1, end=10, value=1, step=.1, title="Frequency", callback=callback)callback.args["freq"] = freq_sliderphase_slider = Slider(start=0, end=6.4, value=0, step=.1, title="Phase", callback=callback)callback.args["phase"] = phase_slideroffset_slider = Slider(start=-5, end=5, value=0, step=.1, title="Offset", callback=callback)callback.args["offset"] = offset_sliderwidgets = WidgetBox(amp_slider, freq_slider, phase_slider, offset_slider)return [widgets, plot]def linked_panning():N = 100x = np.linspace(0, 4 * np.pi, N)y1 = np.sin(x)y2 = np.cos(x)y3 = np.sin(x) + np.cos(x)s1 = figure(tools=tools)s1.circle(x, y1, color="navy", size=8, alpha=0.5)s2 = figure(tools=tools, x_range=s1.x_range, y_range=s1.y_range)s2.circle(x, y2, color="firebrick", size=8, alpha=0.5)s3 = figure(tools='pan, box_select', x_range=s1.x_range)s3.circle(x, y3, color="olive", size=8, alpha=0.5)return [s1, s2, s3]l = layout([bollinger(),slider(),linked_panning(),
], sizing_mode='stretch_both')show(l)


这篇关于[python]bokeh学习总结——bokeh.layouts的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/812373

相关文章

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

C# List.Sort四种重载总结

《C#List.Sort四种重载总结》本文详细分析了C#中List.Sort()方法的四种重载形式及其实现原理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录1. Sort方法的四种重载2. 具体使用- List.Sort();- IComparable

Python海象运算符:=的具体实现

《Python海象运算符:=的具体实现》海象运算符又称​​赋值表达式,Python3.8后可用,其核心设计是在表达式内部完成变量赋值并返回该值,从而简化代码逻辑,下面就来详细的介绍一下如何使用,感兴趣... 目录简介​​条件判断优化循环控制简化​推导式高效计算​正则匹配与数据提取​性能对比简介海象运算符

python项目环境切换的几种实现方式

《python项目环境切换的几种实现方式》本文主要介绍了python项目环境切换的几种实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 如何在不同python项目中,安装不同的依赖2. 如何切换到不同项目的工作空间3.创建项目

SpringBoot项目整合Netty启动失败的常见错误总结

《SpringBoot项目整合Netty启动失败的常见错误总结》本文总结了SpringBoot集成Netty时常见的8类问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、端口冲突问题1. Tomcat与Netty端口冲突二、主线程被阻塞问题1. Netty启动阻