计算机视觉研究院 | EdgeYOLO:边缘设备上实时运行的目标检测器及Pytorch实现

本文主要是介绍计算机视觉研究院 | EdgeYOLO:边缘设备上实时运行的目标检测器及Pytorch实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文来源公众号“计算机视觉研究院”,仅用于学术分享,侵权删,干货满满。

原文链接:EdgeYOLO:边缘设备上实时运行的目标检测器及Pytorch实现

代码地址:https://github.com/LSH9832/edgeyolo

今天分享的研究者提出了一种基于最先进的YOLO框架的高效、低复杂度和无锚的目标检测器,该检测器可以在边缘计算平台上实时实现。

01 概述

研究者开发了一种增强的数据增强方法来有效抑制训练过程中的过拟合,并设计了一种混合随机损失函数来提高小目标的检测精度。受FCOS的启发,提出了一种更轻、更高效的解耦头,可以在不损失精度的情况下提高推理速度。提出的基线模型在MS COCO2017数据集中可以达到50.6%的AP50:95和69.8%的AP50准确度,在VisDrone2019 DET数据集可以达到26.4%的AP50:95和44.8%的AP50准确度,并且它满足边缘计算设备Nvidia Jetson AGX Xavier的实时性要求(FPS≥30)。

02 介绍

在常见的目标检测数据集(如MS COCO2017)上,使用两阶段策略的模型比使用一阶段策略的要好一点。尽管如此,由于两阶段框架的内部限制,它远远不能满足传统计算设备的实时性要求,并且在大多数高性能计算平台上可能面临同样的情况。相比之下,单级目标检测器可以在实时指标和性能之间保持平衡。因此,他们更受研究人员的关注,YOLO系列算法以高速迭代更新。从YOLOv1到YOLOv3的更新主要是对底层框架结构的改进,YOLO的大多数后期主流版本都专注于提高精度和推理速度

此外,他们的优化测试平台主要是具有高性能GPU的大型工作站。然而,他们最先进的模型在这些边缘计算设备上通常以令人不满意的低FPS运行。为此,一些研究人员提出了参数较少、结构较轻的网络结构,如MobileNetShuffleNet,以取代原有的骨干网络,从而在移动设备和边缘设备上实现更好的实时性能,但要牺牲一定的精度。在今天分享中,研究者的目标是设计一种具有良好精度并可以在边缘设备上实时运行的物体检测器

如下图所示,研究者还为计算能力较低的边缘计算设备设计了更轻、参数更少的模型,这些设备也显示出更好的性能。

03 新框架

随机数据扩充不可避免地会导致一些标签无效,例如(a)中第二张图的右下角和第三张图的左下角。虽然有方框,但它们不能提供有效的目标信息。标签数量过少会对训练产生明显的负面影响,可以通过增加(b)中的有效方框数量来避免这种影响。

Enhanced-Mosaic & Mixup

常用的数据增强策略如下(a)和(b)所示,但是(a)和(b)由于数据变换,容易包含不含有效目标的图像,此外这种情况的概率随着每个原始图像中标签数量的减少而逐渐增加。

作者因此提出的方法(c):

  • 首先,对多组图像使用Mosaic方法(可以根据数据集中单个图片中标签的平均数量的丰富程度来设置组数)

  • 然后,通过Mixup方法将最后一个简单处理的图像与Mosaic处理的图像混合(最后一幅图像的原始图像边界在变换后的最终输出图像的边界内)

Lite-Decoupled Head

解耦头首先在FCOS中提出,然后用于其他Anchor-Free目标检测器,如YOLOX。在最后几个网络层使用解耦结构可以加速网络收敛并提高回归性能。但是由于解耦头采用了导致额外推理成本的分支结构,因此YOLOv6提出了具有更快推理速度的高效解耦头,这将中间3×3卷积层的数量减少到仅一层,同时保持与输入特征图相同的更大数量的通道。

但是这种额外的推理成本随着通道和输入大小的增加也变得更加明显。因此引入重参化的技术增强学习能力的同时加快推理。

04 实验

representative results in VisDrone2019-DET-val

representative results on MS COCO2017-val

THE END!

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

这篇关于计算机视觉研究院 | EdgeYOLO:边缘设备上实时运行的目标检测器及Pytorch实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/810575

相关文章

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结