计算机视觉研究院 | EdgeYOLO:边缘设备上实时运行的目标检测器及Pytorch实现

本文主要是介绍计算机视觉研究院 | EdgeYOLO:边缘设备上实时运行的目标检测器及Pytorch实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文来源公众号“计算机视觉研究院”,仅用于学术分享,侵权删,干货满满。

原文链接:EdgeYOLO:边缘设备上实时运行的目标检测器及Pytorch实现

代码地址:https://github.com/LSH9832/edgeyolo

今天分享的研究者提出了一种基于最先进的YOLO框架的高效、低复杂度和无锚的目标检测器,该检测器可以在边缘计算平台上实时实现。

01 概述

研究者开发了一种增强的数据增强方法来有效抑制训练过程中的过拟合,并设计了一种混合随机损失函数来提高小目标的检测精度。受FCOS的启发,提出了一种更轻、更高效的解耦头,可以在不损失精度的情况下提高推理速度。提出的基线模型在MS COCO2017数据集中可以达到50.6%的AP50:95和69.8%的AP50准确度,在VisDrone2019 DET数据集可以达到26.4%的AP50:95和44.8%的AP50准确度,并且它满足边缘计算设备Nvidia Jetson AGX Xavier的实时性要求(FPS≥30)。

02 介绍

在常见的目标检测数据集(如MS COCO2017)上,使用两阶段策略的模型比使用一阶段策略的要好一点。尽管如此,由于两阶段框架的内部限制,它远远不能满足传统计算设备的实时性要求,并且在大多数高性能计算平台上可能面临同样的情况。相比之下,单级目标检测器可以在实时指标和性能之间保持平衡。因此,他们更受研究人员的关注,YOLO系列算法以高速迭代更新。从YOLOv1到YOLOv3的更新主要是对底层框架结构的改进,YOLO的大多数后期主流版本都专注于提高精度和推理速度

此外,他们的优化测试平台主要是具有高性能GPU的大型工作站。然而,他们最先进的模型在这些边缘计算设备上通常以令人不满意的低FPS运行。为此,一些研究人员提出了参数较少、结构较轻的网络结构,如MobileNetShuffleNet,以取代原有的骨干网络,从而在移动设备和边缘设备上实现更好的实时性能,但要牺牲一定的精度。在今天分享中,研究者的目标是设计一种具有良好精度并可以在边缘设备上实时运行的物体检测器

如下图所示,研究者还为计算能力较低的边缘计算设备设计了更轻、参数更少的模型,这些设备也显示出更好的性能。

03 新框架

随机数据扩充不可避免地会导致一些标签无效,例如(a)中第二张图的右下角和第三张图的左下角。虽然有方框,但它们不能提供有效的目标信息。标签数量过少会对训练产生明显的负面影响,可以通过增加(b)中的有效方框数量来避免这种影响。

Enhanced-Mosaic & Mixup

常用的数据增强策略如下(a)和(b)所示,但是(a)和(b)由于数据变换,容易包含不含有效目标的图像,此外这种情况的概率随着每个原始图像中标签数量的减少而逐渐增加。

作者因此提出的方法(c):

  • 首先,对多组图像使用Mosaic方法(可以根据数据集中单个图片中标签的平均数量的丰富程度来设置组数)

  • 然后,通过Mixup方法将最后一个简单处理的图像与Mosaic处理的图像混合(最后一幅图像的原始图像边界在变换后的最终输出图像的边界内)

Lite-Decoupled Head

解耦头首先在FCOS中提出,然后用于其他Anchor-Free目标检测器,如YOLOX。在最后几个网络层使用解耦结构可以加速网络收敛并提高回归性能。但是由于解耦头采用了导致额外推理成本的分支结构,因此YOLOv6提出了具有更快推理速度的高效解耦头,这将中间3×3卷积层的数量减少到仅一层,同时保持与输入特征图相同的更大数量的通道。

但是这种额外的推理成本随着通道和输入大小的增加也变得更加明显。因此引入重参化的技术增强学习能力的同时加快推理。

04 实验

representative results in VisDrone2019-DET-val

representative results on MS COCO2017-val

THE END!

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

这篇关于计算机视觉研究院 | EdgeYOLO:边缘设备上实时运行的目标检测器及Pytorch实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/810575

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、