Infineon_TC264智能车代码初探及C语言深度学习(二)

2024-03-15 02:52

本文主要是介绍Infineon_TC264智能车代码初探及C语言深度学习(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇文章记录我在智能车竞赛中,对 Infineon_TC264 这款芯片的底层库函数的学习分析。通过深入地对其库函数进行分析,C语言深入的知识得以再次在编程中呈现和运用。故觉得很有必要在此进行记录分享一下。

 

目录

​编辑

一、代码段分析 

NO.1 指向结构体的指针

NO.2 单片机的FIFO

NO.3 单片机的DMA 

 NO.4 结构体指针作为函数的入口参数

 NO.5 结构体的嵌套使用

NO.6 初探双核单片机TC264


一、代码段分析 

NO.1 指向结构体的指针

在这段代码中motor_t * motor 是一个指向 motor_t 结构体的指针。这种写法表示 motor 是一个指针变量,指向类型为 motor_t 的结构体变量。通过使用指针,可以在函数内部直接修改结构体的内容,而无需传递整个结构体的副本,从而节省内存空间并提高效率。

在函数中,通过传递 motor 指针作为参数,可以在函数内部访问和操作该结构体变量的成员。通过指针操作,可以对结构体的成员进行读取或修改,包括调整电机的参数、控制电机的运动等操作。指针作为一种强大的工具,用于在函数之间传递和操作复杂的数据结构,如结构体。

NO.2 单片机的FIFO

在单片机中,FIFO表示先进先出(First In, First Out)的缓冲区或队列。FIFO通常用于临时存储数据,以便在处理器和外设之间传输数据时进行缓冲和调节速度。

在单片机中,FIFO通常是一个硬件模块,用于暂时存储数据。当数据被写入FIFO时,它被放置在FIFO的尾部;而当数据被读取时,它从FIFO的头部被取出,保持了数据的顺序性。

FIFO的常见用途包括:

  1. 通信接口:在串行通信中,FIFO可用于暂存接收到的数据或等待发送的数据,以便缓解处理器的负担。

  2. DMA(Direct Memory Access):在DMA传输中,FIFO可以暂存要传输的数据,以便DMA控制器按照一定的速率将数据传输到目标设备或内存中。

  3. 数据采集:在数据采集系统中,FIFO可用于临时存储传感器数据,以便后续处理。

  4. 多任务处理:在实时系统中,FIFO可用于处理不同优先级任务之间的数据传输,确保数据按照先进先出的原则进行处理。

NO.3 单片机的DMA 

DMA(Direct Memory Access)是单片机中的一种数据传输方式,它允许外设直接和内存之间进行数据传输,而无需通过中央处理器(CPU)的干预。

在传统的数据传输方式中,CPU负责从外设读取数据,并将数据写入内存,或者从内存读取数据并将数据发送到外设。这种方式会占用CPU的时间和资源,限制了系统的性能和效率。

而DMA可以解决这个问题。DMA控制器作为一个独立的硬件模块,可以直接访问内存,并与外设进行数据传输,而不需要CPU的介入。

使用DMA传输数据的基本过程如下:

  1. 配置DMA控制器:首先,需要配置DMA控制器,包括设置数据传输的方向(从外设到内存,或从内存到外设)、源地址和目的地址、传输数据的大小等参数。

  2. 启动DMA传输:一旦DMA控制器配置完成,可以启动DMA传输。DMA控制器开始从外设读取数据或向外设写入数据,直接与内存进行数据交换,而不需要CPU的介入。

  3. 完成DMA传输:当DMA传输完成后,DMA控制器会发出中断信号,通知CPU数据传输已经完成。

通过使用DMA,单片机可以在不占用CPU资源的情况下进行高速的数据传输。这对于需要高效处理大量数据的应用非常有用,如音频、视频处理,以及高速通信等。

需要注意的是,DMA的具体实现和功能会因单片机型号和厂商而异。因此,在使用DMA时,需参考所使用单片机的技术手册和相关资料,了解具体的配置和操作方法。

 NO.4 结构体指针作为函数的入口参数

这段代码是用来初始化一个电机的函数。它接受一个指向 motor_t 结构体的指针作为参数,并使用该结构体中的信息来初始化电机的GPIO、编码器和PWM等部分。

首先,它调用 gpio_init 函数来初始化电机的使能引脚(EN_pin),然后调用 encoder_quad_init 函数来初始化电机的编码器,接着调用 pwm_init 函数来初始化电机的PWM信号,最后调用 gpio_init 函数来初始化电机的方向控制引脚(DIR_pin)。

在这段代码中,假设 motor_t 结构体包含了所有必要的信息来初始化电机所需的各个部分,而这些信息则通过 motor 指针传递进来。

 NO.5 结构体的嵌套使用

这段代码是对 motor_t 结构体变量 motor_xia 进行初始化赋值。

 

NO.6 初探双核单片机TC264

双核单片机相对于单核单片机来说,具有以下区别:

  1. 性能更强:双核单片机拥有两个处理核心,可以同时运行多个任务,提高处理性能和效率。

  2. 更高的可靠性:双核单片机可以实现双核热备份,一旦一个核心出现问题,另一个核心可以继续工作,提高系统的稳定性和可靠性。

  3. 更灵活的应用:双核单片机可以将不同的任务分配给不同的核心处理,实现并行处理,适用于复杂的应用场景。

总的来说,双核单片机相比于单核单片机在性能、可靠性和应用方面都有明显的优势,适合需要更高处理性能和稳定性要求的应用场景。

双核单片机的设计通常会考虑到避免核心之间的冲突。在设计上,双核单片机通常会采用独立的缓存系统、总线结构等来确保两个核心能够独立运行而不会相互干扰。

此外,软件开发人员在编写应用程序时也需要注意避免核心之间的冲突。他们可以通过合理分配任务、使用同步机制等方式来确保双核系统的稳定运行,避免核心之间的竞争和冲突。

在双核系统中,同一个变量在不同核心中运行时,最终的值可能会取决于具体的情况和系统设计。由于每个核心都有自己的寄存器和缓存,可能会导致变量的值在两个核心之间发生不同步。

如果在双核系统中需要多个核心之间共享变量,并且需要保证变量的一致性,通常需要使用同步机制来确保数据的一致性,比如使用锁、信号量、互斥量等。这样可以避免出现数据竞争和不一致的情况,保证变量的最终值是符合预期的。

因此,要确保在双核系统中对同一个变量进行操作时能够得到正确的结果,开发人员需要特别注意同步机制的使用,以避免数据竞争和不确定性的情况发生。

 如何进行同步机制呢?

在双核系统中,可以采用以下几种常见的同步机制来确保对共享变量的操作是有序且正确的:

  1. 锁(Lock):使用锁机制可以确保在一个核心执行某段代码时,其他核心无法同时执行该段代码。常见的锁包括互斥锁(Mutex)和自旋锁(Spinlock),可以根据具体需求选择适合的锁类型。

  2. 信号量(Semaphore)信号量是一种计数器,用于控制多个核心对共享资源的访问。核心在访问共享资源之前需要先获取信号量,如果信号量计数为0,则核心会被阻塞,直到其他核心释放信号量。

  3. 互斥量(Mutex)互斥量是一种特殊的锁,用于保护共享资源的访问。只有获取到互斥量的核心才能访问共享资源,其他核心需要等待互斥量释放后才能进行访问。

  4. 条件变量(Condition Variable)条件变量用于实现核心之间的等待和唤醒机制。一个核心可以等待某个条件满足后再继续执行,而其他核心可以在满足条件时通知等待的核心继续执行。

这些同步机制可以根据具体的应用场景和需求选择使用。在代码编写中,需要谨慎地使用同步机制,确保正确地获取和释放锁、信号量等,以避免死锁和竞态条件等问题的发生。此外,一些双核单片机芯片也提供了特定的硬件支持来简化同步操作的实现,可以根据具体芯片的文档进行使用和配置。

如何在双核系统中使用互斥锁(Mutex)来对共享资源进行加锁和解锁操作?

#include <stdio.h>
#include <pthread.h>// 定义共享资源
int shared_resource = 0;// 定义互斥锁
pthread_mutex_t mutex;// 线程函数1,对共享资源递增
void *thread_func1(void *arg) {for (int i = 0; i < 1000000; i++) {// 加锁pthread_mutex_lock(&mutex);shared_resource++;// 解锁pthread_mutex_unlock(&mutex);}return NULL;
}// 线程函数2,对共享资源递减
void *thread_func2(void *arg) {for (int i = 0; i < 1000000; i++) {// 加锁pthread_mutex_lock(&mutex);shared_resource--;// 解锁pthread_mutex_unlock(&mutex);}return NULL;
}int main() {pthread_t thread1, thread2;// 初始化互斥锁pthread_mutex_init(&mutex, NULL);// 创建线程1pthread_create(&thread1, NULL, thread_func1, NULL);// 创建线程2pthread_create(&thread2, NULL, thread_func2, NULL);// 等待线程结束pthread_join(thread1, NULL);pthread_join(thread2, NULL);// 销毁互斥锁pthread_mutex_destroy(&mutex);// 打印共享资源的最终值printf("Final value of shared_resource: %d\n", shared_resource);return 0;
}

在上面的代码中,通过创建两个线程并分别对共享资源进行递增和递减操作,使用互斥锁来保护共享资源的访问。在每个线程对共享资源进行操作之前,先调用 pthread_mutex_lock() 加锁,操作完成后再调用 pthread_mutex_unlock() 解锁。这样可以确保同一时刻只有一个线程可以访问共享资源,避免数据竞争和不一致性的问题。 

这篇关于Infineon_TC264智能车代码初探及C语言深度学习(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/810561

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步