520情人节,不懂送女朋友什么牌子的口红?没关系!Python 数据分析告诉你

本文主要是介绍520情人节,不懂送女朋友什么牌子的口红?没关系!Python 数据分析告诉你,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、案例说明

1、案例背景

520情人节,不懂送女朋友什么牌子的口红?没关系!Python 数据分析告诉你。

我们爬取了京东商城口红近 4000 条口红商品信息,并对这些口红数据进行分析,让大家买口红给女朋友时有个选择的参考,从如下几个方面去分析:

1、哪些价格区间的口红卖的最好?
2、口红销量分布情况。
3、销量前10的口红有哪些?
4、销量前10的店铺。
5、商品价格和销量的关系。

文末领取全套最新Python学习资源!

2、任务说明

通过 Python 爬虫爬取了京东上所有口红铺的数据集 jd_data.csv。

我们希望通过该数据集,针对不同的口红品牌和店铺进行统计与分析,从而能够解开我们上述疑问。

3、数据字段的说明

字段含义图:

图片

4、数据分析的流程
在这里插入图片描述

二、数据预处理

数据清洗

1、首先从csv文件中导入数据

python复制代码import pandas as pd 
import matplotlib.pyplot as plt #读取数据
dataframe = pd.read_csv('jd_data.csv',encoding = 'gb18030')#这里不能使用utf-8
print(dataframe.shape)

查看下有多少行、列数据:
(3816, 6)
共有3816行,6列(上面有这六个字段说明)

2、缺失值处理

kotlin复制代码data = dataframe.dropna(how='any')
data.head()
print(data.shape)

(3610, 6)
从这里可以看出还是有些缺失值的

对于缺失值的处理主要有两种方法:

删除

填充:分为均值、中位数、众数、附近值进行填充,还有牛顿差值法等等。
这里偷一下懒,使用比较简便的删除的方式处理缺失值,毕竟缺失的不是很多。

ini复制代码# inplace=True表示原地修改数据集  
data.dropna(axis=0, inplace=True)   # 对删除后缺失值后的数据集,再次进行缺失值统计  
data.isnull().sum(axis=1)   

数据转换

1、将评论的+和万字修改

scss复制代码def dealComment(comm_colum):num = str(comm_colum).split('+')[0]if '万' in num:if '.' in num :num = num.replace('.','').replace('万','000')else:num = num.replace('.','').replace('万','0000')return num
dataframe['comment'] = dataframe['comment'].apply(lambda x: dealComment_num(x))
#转换成int类型
dataframe['comment'] = dataframe.comment.astype('int') 
data = dataframe.drop('comment',axis = 1)
print(data.head(10))

经过处理完后的数据:

图片

数据预处理是数据分析的一项重要任务,能否得到准确的数据分析结果离不开数据预处理,下面我们开始对口红数据进行分析吧!

文末领取全套最新Python学习资源!

三、数据分析

京东上面商品没有销量这一信息,我们姑且将评论数当成是销量。

本次项目中取用了 name、price、comment、shop_name 、shop_type 这几个字段的信息。

分别是商品标题名称、价格、评论数、店铺名、店铺类型来进行分析。

1、口红价格分布区间

ini复制代码import pandas as pd 
import matplotlib.pyplot as plt#读取数据
data = pd.read_csv('jd_data.csv',encoding = 'gb18030')plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.figure(figsize=(10,8))
price = data[data['price'] < 1000]
plt.hist(price['price'], bins=10, color='brown')
plt.xlabel('价格')
plt.ylabel('商品数量')
plt.title('价格商品分布')
plt.show()

结果如下:

图片

通过上图,可以很清楚看到:

  • 口红的价格绝大多数在0-500元的区间之内,但是也有口红的售价达到了1000元,哈哈努力挣钱吧。
  • 其中200-300元价位的数量非常的高,超过了1200,而且价格超过300元的有明显的减少趋势,哈哈价格才是王道。

2、销量分布情况

由于没有爬取到销量信息,所以将评论数当成销量

ini复制代码#销量分析
sale_num = data[data['comment'] > 100]
plt.figure(figsize=(10,8))
#print(len(sale_num)/len(data))  #查看下大致的区间分布
plt.hist(sale_num['comment'], bins=20, color='blue')
plt.xlabel('销量')
plt.ylabel('数量')
plt.title('销量情况')
plt.show()

结果如下:

图片

通过直方图我们可以看到:

  • 销售量基本是在20万以内。
  • 销售量在10万以内的占了绝大多数
  • 还有极个别的店铺销量竟然超过了100万

3、销售前10的口红

scss复制代码#销售前10的口红
#抽取商品标题的简略信息
def get_title(item):title = item.split(' ')[0]return titledata['small_name'] = data['name'].apply(lambda x: get_title(x)) 
data1 = data.drop('name',axis = 1)
top10Lipstick = data1.sort_values('comment',ascending=False)
print(top10Lipstick.head(10))
title = top10Lipstick['small_name'][:10]
sale_num = top10Lipstick['comment'][:10]
plt.figure(figsize=(10,8),dpi = 80) 
plt.bar(range(10),sale_num,width=0.6,color='red')
plt.xticks(range(10),title,rotation=45)
#plt.ylim((9,9.7))   #设置y轴坐标
plt.ylabel('数量') 
plt.xlabel('标题')  
plt.title('销量前10的糖果')
for x,y in enumerate(list(sale_num)):   plt.text(x,float(y)+0.01,y,ha='center')

结果如下:

文末领取全套最新Python学习资源!

图片

图片

可以发现,排名前三位的是:

  • 京东国际魅可(MAC)经典唇膏 子弹头口红3g Chili 小辣椒色

商品图片

图片

  • 【520礼物】中国风口红套装礼盒女颐和园同款唇膏唇釉学生非小样彩妆 口红套装(6支)

商品图片

图片

  • 【520礼物】迪奥(Dior)烈艳蓝金唇膏-哑光999# 3.5g 传奇红(口红 正红色 传奇红 赠精美礼盒)

商品图片

图片

4、销量前10的店铺

分析完销量前10的商品后,我们再来看下销量前10的店铺:

代码如下:

scss复制代码#销量前10的店铺
top_shop = data.groupby('shop_name')['comment'].sum().sort_values(ascending=False)[:10]
print(top_shop.head(10))plt.figure(figsize=(10,8),dpi = 80)
top_shop.plot(kind = 'bar',color='red',width= 0.6)
plt.ylabel('数量')
plt.xlabel('店铺名')  
plt.title('销量前10的店铺') 
plt.xticks(rotation=45)
for x,y in enumerate(list(top_shop)): plt.text(x,float(y)+0.1,y,ha='center')
plt.show()

结果如下:

图片

由上图可以看到:

  • MAC魅可海外自营专区 占据第一名,达 1365308 的销售量,而且基本前10的店铺销量都在5万以上。
  • 前三名都基本达到了130多万
  • 前10名中有5个是京东自营

5、商品价格和销量的关系

我们采用散点图的方式,看看价格和销量的分布关系

kotlin复制代码plt.figure(figsize=(10,8))
plt.scatter(data['price'],data['comment'], color='blue')
plt.xlabel('价格')
plt.ylabel('销量')
plt.title('价格、销量的散点分布')
plt.show()

结果如下:

图片

可以看出:

随着价格的升高销量会减小,而且价格在400内,对销量的影响不大,证明绝大多数人的口红消费区间在0-400元之间,但是最贵的竟然达到了近1700元,哈哈,贫穷限制了我的想象。

四、总结

经过这次小小的数据分析,还是学到了许多的。作为一名小白,还有许多要学习:

  • 数据清洗,它是能分析出正确结果的保证;
  • 如何挖掘数据不同维度间的联系等;

不足:本次数据分析还有许多需要完善的地方:

  • 比如分析不同类型的店铺占比店铺;
  • 不同类型的店铺之间的销量对比;
  • 由于本次没有爬取评论数据,没有做情感分析;

数据分析之路还很漫长,加油!


如果大家对Python感兴趣,那么这套python学习资料一定对你有用

对于0基础小白入门:

这如果你是零基础小白,想快速入门Python是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习、Python量化交易等习教程。带你从零基础系统性的学好Python!

在这里插入图片描述
我已经上传至CSDN官方,如果需要可以扫描下方二维码都可以免费获取【保证100%免费】

零基础Python学习资源介绍

  1. Python所有方向的学习路线图,清楚各个方向要学什么东西

  2. 600多节Python课程视频,涵盖必备基础、爬虫和数据分析

  3. 100多个Python实战案例,含50个超大型项目详解,学习不再是只会理论

  4. 爬虫与反爬虫攻防教程包,含15个大型网站迫解

  5. 超300本Python电子好书,从入门到高阶应有尽有

  6. 华为出品独家Python漫画教程,手机也能学习

  7. 历年互联网企业Python面试真题,复习时非常方便

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)
在这里插入图片描述

👉Python必备开发工具👈

在这里插入图片描述

👉Python学习视频与电子书籍👈

观看零基础学习视频,结合电子书籍最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述
在这里插入图片描述

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉100道Python练习题👈

检查学习结果,巩固所学知识。
在这里插入图片描述

👉面试刷题👈

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

最新全套【Python入门到进阶资料 & 实战源码 &安装工具】(安全链接,放心点击)

上面这份完整版的Python全套学习资料已经上传至CSDN官方,朋友如果需要可以直接微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。

本期内容就分享到这里,下回再见啊 !喜欢并且对你有用的话,记得点赞支持一下 !!

这篇关于520情人节,不懂送女朋友什么牌子的口红?没关系!Python 数据分析告诉你的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/810535

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(