【目标跟踪】奇葩需求如何处理(一)

2024-03-14 23:52

本文主要是介绍【目标跟踪】奇葩需求如何处理(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、前言
  • 二、奇葩需求
    • 2.1、减速带
    • 2.2、红绿灯
  • 三、后记

一、前言

  1. 工作中往往出现些奇葩需求。那个***需要跟踪,减速带、红绿灯、井盖,甚至是鸟、烟头、手指等。
  2. 今天就给大家分享下博主遇到那些奇葩需求,遇到了这些奇葩需求首先问候产品经理(斜眼笑.jpg)。
  3. 玩笑归玩笑,冷静下来还是要好好分析实际需求,想想如何解决这些实际问题。作为个优秀的工程师,解决问题才是关键。

二、奇葩需求

在低级别无人驾驶中,一般就是辅助倒车,辅助驾驶,辅助避让。或者说多数情况无人驾驶都是在特定的场景,如常说的高速场景。

而在高级别无人驾驶中如L4级别,要考虑的需求会大很多。当然,在 2024 年的今天,想在乘用车上实现无人驾驶还是有段距离,但在市场与政策双重刺激下,相信在不久的将来会实现。

今天给大家分享下一些在高级别无人驾驶过程中遇到的一些奇葩需求,遇到这些需求有哪些处理方法。

2.1、减速带

需求:当车体前方有减带时,我们要告知车子减速通行。

减速带在城市交通道路上是非常常见的。

图片名称

这个跟正常识别人、车等障碍物不太一样。类似减速带这类障碍物是可通行的,只是需要做减速通行。那么我们处理的逻辑就要改变。这里不仅仅是简单的检测。减速带的检测模型可以使用 segformer 模型或 TwinsNet 模型,也可以使用 yolo 系列做检测。

因为检测不可避免的存在错误检测。如果没有减速带检测出减速带,此时车子会出现明显卡顿,加速减速、加速减速,想想也知道场面多么滑稽。这里可以结合历史信息做一个平滑处理,主要是为了处理没有减速带而错误检测出减速带的情况。

    int num = (objectMessage->contours.size() != 0) ? 1: 0;resVec.push_back(num);sum += num;int length = resVec.size();if (length > maxLength) {sum -= resVec[0];resVec.erase(resVec.begin());length -= 1;}ans = (sum >= length * weight)? 1:0;  // 判断是否输出

2.2、红绿灯

图片名称

城市道路红绿灯特别场景,许多做智能驾驶厂家都吹嘘自己可以做的很好,实测上很难评([捂脸])。

红绿灯场景处理比较复杂主要几个方面

  1. 红绿灯目标小,难以稳定检测(不像人、车);且数据集少,标注成本大。
  2. 场景大多数存在多个红绿灯,难以把控这个红绿灯干嘛的,那个红绿灯干嘛的。
  3. 红绿灯灯的种类多,有人字的、有自信车形状的、有圆形的;红绿灯种类多,有放马路中央的,有几米高的,也有放地上的。
  4. 红绿灯识别完需要对红绿灯分类,黄灯、红灯、绿灯、没有灯等等。
  5. 红绿灯交通规则较为复杂,对路径规划提出较大要求。

综上所述,可以得知红绿灯场景处理起来的确费时费力,且效果不一定好。对于标注、规划等问题,这里不详细讲述。这里主要讲解跟踪逻辑。

检测红绿灯这个直接用我们 yolo 系列就足够了。颜色识别我们用颜色分类做。还需要结合历史信息综合判断,如在 1s 的连续帧不会红——>绿——>红来回跳动。可以根据国家红绿灯标准制定相应的策略,可以容忍unkonw。

目标跟踪选用 Bytetrack 或 BotSort。个人更加推荐 BotSort。原因是:(1)红绿灯目标小对匹配要求高(2)车子轻微抖动会影响跟踪

这里放一段开源 BotSort python 代码。如果想了解论文详细思想可以参考博主之前博客 https://blog.csdn.net/qq_49560248/article/details/136026766。

import cv2
import numpy as np
import copydef applyFeaures(self, raw_frame, detections=None):# Initializeheight, width, _ = raw_frame.shapeframe = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)H = np.eye(2, 3)# Downscale image (TODO: consider using pyramids)if self.downscale > 1.0:# frame = cv2.GaussianBlur(frame, (3, 3), 1.5)frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))width = width // self.downscaleheight = height // self.downscale# find the keypointsmask = np.zeros_like(frame)# mask[int(0.05 * height): int(0.95 * height), int(0.05 * width): int(0.95 * width)] = 255mask[int(0.02 * height): int(0.98 * height), int(0.02 * width): int(0.98 * width)] = 255if detections is not None:for det in detections:tlbr = (det[:4] / self.downscale).astype(np.int_)mask[tlbr[1]:tlbr[3], tlbr[0]:tlbr[2]] = 0keypoints = self.detector.detect(frame, mask)# compute the descriptorskeypoints, descriptors = self.extractor.compute(frame, keypoints)# Handle first frameif not self.initializedFirstFrame:# Initialize dataself.prevFrame = frame.copy()self.prevKeyPoints = copy.copy(keypoints)self.prevDescriptors = copy.copy(descriptors)# Initialization doneself.initializedFirstFrame = Truereturn H# Match descriptors.knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2)# Filtered matches based on smallest spatial distancematches = []spatialDistances = []maxSpatialDistance = 0.25 * np.array([width, height])# Handle empty matches caseif len(knnMatches) == 0:# Store to next iterationself.prevFrame = frame.copy()self.prevKeyPoints = copy.copy(keypoints)self.prevDescriptors = copy.copy(descriptors)return Hfor m, n in knnMatches:if m.distance < 0.9 * n.distance:prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].ptcurrKeyPointLocation = keypoints[m.trainIdx].ptspatialDistance = (prevKeyPointLocation[0] - currKeyPointLocation[0],prevKeyPointLocation[1] - currKeyPointLocation[1])if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and \(np.abs(spatialDistance[1]) < maxSpatialDistance[1]):spatialDistances.append(spatialDistance)matches.append(m)meanSpatialDistances = np.mean(spatialDistances, 0)stdSpatialDistances = np.std(spatialDistances, 0)inliesrs = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistancesgoodMatches = []prevPoints = []currPoints = []for i in range(len(matches)):if inliesrs[i, 0] and inliesrs[i, 1]:goodMatches.append(matches[i])prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt)currPoints.append(keypoints[matches[i].trainIdx].pt)prevPoints = np.array(prevPoints)currPoints = np.array(currPoints)# Find rigid matrixif (np.size(prevPoints, 0) > 4) and (np.size(prevPoints, 0) == np.size(prevPoints, 0)):H, inliesrs = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)# Handle downscaleif self.downscale > 1.0:H[0, 2] *= self.downscaleH[1, 2] *= self.downscaleelse:print('Warning: not enough matching points')# Store to next iterationself.prevFrame = frame.copy()self.prevKeyPoints = copy.copy(keypoints)self.prevDescriptors = copy.copy(descriptors)return H

关于红绿灯定位。这个光靠相机很难实现精准定位。一般需要地图信息辅助,视觉方面可以辅助区分相机大致位置如:左红绿灯是人行道 前红绿灯是机动车道。这里放一段博主初略估计的效果图

图片名称

三、后记

除了上面这些需求,博主还遇到更加奇葩的,今天就到这,下次分享更奇葩的。欢迎大家交流

这篇关于【目标跟踪】奇葩需求如何处理(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/810124

相关文章

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Spring Boot 整合 ShedLock 处理定时任务重复执行的问题小结

《SpringBoot整合ShedLock处理定时任务重复执行的问题小结》ShedLock是解决分布式系统中定时任务重复执行问题的Java库,通过在数据库中加锁,确保只有一个节点在指定时间执行... 目录前言什么是 ShedLock?ShedLock 的工作原理:定时任务重复执行China编程的问题使用 Shed

Redis如何使用zset处理排行榜和计数问题

《Redis如何使用zset处理排行榜和计数问题》Redis的ZSET数据结构非常适合处理排行榜和计数问题,它可以在高并发的点赞业务中高效地管理点赞的排名,并且由于ZSET的排序特性,可以轻松实现根据... 目录Redis使用zset处理排行榜和计数业务逻辑ZSET 数据结构优化高并发的点赞操作ZSET 结

微服务架构之使用RabbitMQ进行异步处理方式

《微服务架构之使用RabbitMQ进行异步处理方式》本文介绍了RabbitMQ的基本概念、异步调用处理逻辑、RabbitMQ的基本使用方法以及在SpringBoot项目中使用RabbitMQ解决高并发... 目录一.什么是RabbitMQ?二.异步调用处理逻辑:三.RabbitMQ的基本使用1.安装2.架构

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

mysql外键创建不成功/失效如何处理

《mysql外键创建不成功/失效如何处理》文章介绍了在MySQL5.5.40版本中,创建带有外键约束的`stu`和`grade`表时遇到的问题,发现`grade`表的`id`字段没有随着`studen... 当前mysql版本:SELECT VERSION();结果为:5.5.40。在复习mysql外键约

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req