Clickhouse MergeTree 原理(一)

2024-03-14 23:20
文章标签 原理 clickhouse mergetree

本文主要是介绍Clickhouse MergeTree 原理(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:俊达
MergeTree是Clickhouse里最核心的存储引擎。Clickhouse里有一系列以MergeTree为基础的引擎(见下图),理解了基础MergeTree,就能理解整个系列的MergeTree引擎的核心原理。
在这里插入图片描述

本文对MergeTree的基本原理进行介绍。

1 MergeTree引擎表创建

1、基本语法:

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1] [TTL expr1],name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2] [TTL expr2],...INDEX index_name1 expr1 TYPE type1(...) GRANULARITY value1,INDEX index_name2 expr2 TYPE type2(...) GRANULARITY value2
) ENGINE = MergeTree()
ORDER BY expr
[PARTITION BY expr]
[PRIMARY KEY expr]
[SAMPLE BY expr]
[TTL expr [DELETE|TO DISK 'xxx'|TO VOLUME 'xxx'], ...]
[SETTINGS name=value, ...]

2、关键属性说明
[partition by expr] : 分区键,分区键可以指定一个或多个字段,若不指定分区键时默认为其生成一个名为all的分区。[选填]

[order by expr] : 排序键,指定一个数据段内的数据排序规则。默认情况下主键与排序键相同。排序键可以是一个或多个字段。[必填]

[primary key expr] : 主键,若设置表primary key,表数据会按照主键字段生成一级索引;若无显式执行primary key,则使用order by字段作为主键排序。MergeTree主键允许重复数据。[选填]

[sample by expr] : 抽样表达式,声明使用何种方式进行抽样采集。[选填]

上面的这些属性,只有Order by是必填的。

下面是一个具体的例子:

CREATE TABLE local.metrics
(`tt` DateTime,`tags` Map(String, String),`metric` String,`value` Float64,`str_value` String
)
ENGINE = MergeTree
PARTITION BY toYYYYMMDD(tt)
ORDER BY (metric, tt)
SETTINGS index_granularity = 8192

2 MergeTree物理存储结构

1、Clickhouse中,一个MergeTree引擎表,由一个或多个分区(partition)组成。如果建表时没有制定分区条件,则所有的数据都位于同一个分区。

2、每一个分区,由1个或多个part组成。每一个part,对应clickhouse数据目录中的一个目录,该目录下存储了part对应的数据。

3、part是clickhouse数据存储、数据复制、数据合并的基本单位。每次insert数据,会写入到单独的part中。

4、part的数据一旦写入,就不会发生变化。只有在数据合并时,才会将被合并的part设置为inactive,等后台进程清理。

5、数据合并时,会对同一个分区(partition)中的part进行合并。不同分区的数据不会合并到一起。

我们可以通过system库中的parts表查看part信息。

ck01 :) select * from system.parts where table='metrics'\GSELECT *
FROM system.parts
WHERE table = 'metrics'Query id: 2948f29c-1f23-4f5e-b9a5-ac6006ce5383Row 1:
──────
partition:                             20221129
name:                                  20221129_1_4_2
uuid:                                  00000000-0000-0000-0000-000000000000
part_type:                             Compact
active:                                1
marks:                                 2
rows:                                  3
bytes_on_disk:                         412
data_compressed_bytes:                 203
data_uncompressed_bytes:               92
marks_bytes:                           176
min_block_number:                      1
max_block_number:                      4
level:                                 2
data_version:                          1
primary_key_bytes_in_memory:           36
primary_key_bytes_in_memory_allocated: 8256
is_frozen:                             0
database:                              local
table:                                 metrics
engine:                                MergeTree
disk_name:                             default
path:                                  /data/clickhouse/clickhouse/store/def/def88518-fd7b-418d-a7dd-6564e38bba39/20221129_1_4_2/
...

分区目录命名规则

分区目录的命名规范为: PartitionID_MinBlockNum_MaxBlockNum_Level

PartitionID : 分区ID。

MinBlockNum、MaxBlockNum : 最小数据块编号、最大数据块编号,数据块编号由1开始自增长。

Level : 合并操作层级,随着合并的次数递增。

分区目录内容

在这里插入图片描述
checksums.txt : 校验文件,使用二进制格式存储。记录了各类文件的大小以及大小的hash值

columns.txt : 列信息文件,使用明文存格式储。存储了该分区下的表字段信息。

count.txt : 计数文件,存储了当前分区下的数据行数。

default_compression_codec.txt :

[column].bin : 列字段数据文件,默认使用LZ4格式压缩存储。

[column].mrk2 : 列字段标记文件,使用二进制格式存储,标记文件中保存了[column].bin文件中数据的偏移量。标记文件是一级索引文件与数据文件之间进行关联的桥梁。

primary.idx : 一级索引文件,使用二进制格式存储。存储了该分区的稀疏索引,MergeTree通过primary by或order by声明一级索引的定义。

skip_idx[column].idx、skip_idx[column].mrk2 : 如果建表语句中声明了相关的二级索引(跳数索引),则会生成相关二级索引的索引文件与标记文件。

clickhouse part数据存储分两种格式:

  • compact: 所有字段的数据都存储道data.bin中。如上图中part的格式就是compact。

  • wide: 每个字段都存储到单独的文件中

存储格式受参数min_bytes_for_wide_part和min_rows_for_wide_part控制。只有当纪录数或记录占用的空间超过配置参数,才以wide格式存储。

part合并过程

当多个同分区的分区目录进行合并时:

  • 分区ID相同
  • MinBlockNum取所有待合并分区目录中最小的MinBlockNum值
  • MaxBlockNum取所有待合并分区目录中最大的MaxBlockNum值
  • Level取所有待合并分区目录中最大Level+1

更多技术信息请查看云掣官网https://yunche.pro/?t=yrgw

这篇关于Clickhouse MergeTree 原理(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/810039

相关文章

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu

hdu4059容斥原理

求1-n中与n互质的数的4次方之和 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWrit

【Go】go连接clickhouse使用TCP协议

离开你是傻是对是错 是看破是软弱 这结果是爱是恨或者是什么 如果是种解脱 怎么会还有眷恋在我心窝 那么爱你为什么                      🎵 黄品源/莫文蔚《那么爱你为什么》 package mainimport ("context""fmt""log""time""github.com/ClickHouse/clickhouse-go/v2")func main(