后门之王:谈一谈加密算法中的数学后门

2024-03-14 20:58

本文主要是介绍后门之王:谈一谈加密算法中的数学后门,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!





政府和情报机构力图控制或绕过对数据及通信的加密防护,而给加密算法开个后门,被认为是实现加密控制的最佳办法。安全研究人员常会找寻加密算法实现中的漏洞,但却不会投入太多精力在查找数学后门上。


在加密防护上,研究人员开始验证信息安全交换和电子商务的支撑技术。埃里克·菲利奥尔,法国高等计算机、电子及自动化学院(ESIEA)操作密码学及病毒学实验室研究主管。他认为,只有在协议/实现/管理层面的后门实现被普遍考虑到了,而在查找数学后门或设计后门上投入的努力,还远远不够。


上周举行的欧洲黑帽大会上,菲利奥尔和他的同事阿诺德·般涅尔做了演讲,题为“加密系统设计后门——我们能信任外国加密算法吗?”,阐述了设计数学后门的可能性。


演讲中,两位研究人员提出了BEA-1块加密算法。该算法类似AES,但含有一个可供进行有效密码分析的数学后门。


两位法国密码学家解释道:“在不知道我们后门的情况下,BEA-1成功通过了所有统计检验和密码分析,NIST和NSA都正式考虑进行加密验证了。尤其是,BEA-1算法(80位块大小,120位密钥,11轮加密)本就是为抵御线性和差分密码分析而设计的。我们的算法在2017年2月公开,没人证明该后门可被轻易检测到,也没人展示过其利用方法。”


他们是如何做到的


黑帽大会的演讲中,菲利奥尔和般涅尔公开了该有意设置的后门,演示了如何利用该后门以区区600KB数据(300KB明文+300KB密文),在10秒钟内恢复出120位的密钥。这就是个概念验证,还有更复杂的后门可以被构造出来。


往算法中插入后门,和检测并证明后门的存在之间,在数学上是非常不对称的。也就是说,我们必须创建某种概念上的单向函数。


菲利奥尔研究加密算法数学后门多年,今年早些时候还发表了一篇关于块加密算法潜在问题的论文。


为什么即便在研究领域,数学也不流行


研究数学后门非常困难,吸引不了需要在时髦话题上频繁发表论文的研究人员。此类研究基本上也就是在情报机构(GCHQ、NSA等)的研发实验室做做,而且更多是后门的设计而非检测。


斯诺登爆料NSA花1000万美元,让 RSA Security 在其加密工具集中,默认使用脆弱的双椭圆曲线随机数生成算法(Dual_EC_DRBG)。这就展现出数学后门,或者设计后门,不只存在于理论上,而是很现实的东西。并且,Dual_EC_DRBG不是个案。


数学后门的例子有很多,但只有少数几个为人所知。


我确信所有出口版加密系统都会以某种方式嵌入后门,这直接违反了《瓦森纳协定》。Crypto AG(瑞士通信及信息安全公司)出口的加密机中含有NSA的后门就是个绝佳案例。其他不那么出名的例子还有一些。


有多少数学后门存在?


我们很难确知实现后门和数学后门的普遍程度和重要性。证明后门的存在是个很困难的数学问题。但分析国际规则就能很清楚地看出,至少出口的加密设备/技术中是有后门的。更令人担忧的是,大众监视的环境下,国内使用的加密技术中会不会也有后门?


那么,同行审查能不能免除数学后门呢?


菲利奥尔表示,这恐怕需要改革:


能够证明安全的“防御”远比能够证明不安全的“攻击”要难实现得多。最大的问题在于,学术上对安全证明困难度的忽视,造成我们都把“没有证据证明不安全”,直接当成了“安全的证据”


攻击者不会把自己能做的所有事都公布出来,尤其是在情报机构势力庞大的密码学方面。于是,专家和学术研究界只能参考已知的攻击案例。想象一下NSA这种40年来随时有300名最聪明的数学家为其服务的机构能产出什么?那就是整套数学知识全集啊!


菲利奥尔还认为,作为行业标准被广泛审查过的AES算法,也未必安全,虽然他并没有证据证明该算法不安全


即便我不能证明AES有漏洞,但也没人能证明这算法里就没有漏洞。老实说,美国会提供一个够安全的军用级加密算法而不施以任何形式的控制?反正我是不信的


AES竞赛本就是由NIST组织的,还有NSA的技术支持(这都是众所周知的了)。在恐怖主义威胁甚嚣尘上的时代,美国才不会蠢到不去筹备作为常规武器“对策”的东西呢。像美国、英国、德国、法国等有点儿体面的国家,都不会在有高安全需求的事务上使用外国算法。他们强制使用国产产品和标准——从算法到其实现。


加密算法的选择、分析和标准化方式都需要改革。这得是个主要由开放密码社区驱动的,完全开放的过程。


政府和情报机构力图控制或绕过对数据及通信的加密防护,而给加密算法开个后门,被认为是实现加密控制的最佳办法。安全研究人员常会找寻加密算法实现中的漏洞,但却不会投入太多精力在查找数学后门上。


在加密防护上,研究人员开始验证信息安全交换和电子商务的支撑技术。埃里克·菲利奥尔,法国高等计算机、电子及自动化学院(ESIEA)操作密码学及病毒学实验室研究主管。他认为,只有在协议/实现/管理层面的后门实现被普遍考虑到了,而在查找数学后门或设计后门上投入的努力,还远远不够。


上周举行的欧洲黑帽大会上,菲利奥尔和他的同事阿诺德·般涅尔做了演讲,题为“加密系统设计后门——我们能信任外国加密算法吗?”,阐述了设计数学后门的可能性。


演讲中,两位研究人员提出了BEA-1块加密算法。该算法类似AES,但含有一个可供进行有效密码分析的数学后门。


两位法国密码学家解释道:“在不知道我们后门的情况下,BEA-1成功通过了所有统计检验和密码分析,NIST和NSA都正式考虑进行加密验证了。尤其是,BEA-1算法(80位块大小,120位密钥,11轮加密)本就是为抵御线性和差分密码分析而设计的。我们的算法在2017年2月公开,没人证明该后门可被轻易检测到,也没人展示过其利用方法。”


他们是如何做到的


黑帽大会的演讲中,菲利奥尔和般涅尔公开了该有意设置的后门,演示了如何利用该后门以区区600KB数据(300KB明文+300KB密文),在10秒钟内恢复出120位的密钥。这就是个概念验证,还有更复杂的后门可以被构造出来。


往算法中插入后门,和检测并证明后门的存在之间,在数学上是非常不对称的。也就是说,我们必须创建某种概念上的单向函数。


菲利奥尔研究加密算法数学后门多年,今年早些时候还发表了一篇关于块加密算法潜在问题的论文。


为什么即便在研究领域,数学也不流行


研究数学后门非常困难,吸引不了需要在时髦话题上频繁发表论文的研究人员。此类研究基本上也就是在情报机构(GCHQ、NSA等)的研发实验室做做,而且更多是后门的设计而非检测。


斯诺登爆料NSA花1000万美元,让 RSA Security 在其加密工具集中,默认使用脆弱的双椭圆曲线随机数生成算法(Dual_EC_DRBG)。这就展现出数学后门,或者设计后门,不只存在于理论上,而是很现实的东西。并且,Dual_EC_DRBG不是个案。


数学后门的例子有很多,但只有少数几个为人所知。


我确信所有出口版加密系统都会以某种方式嵌入后门,这直接违反了《瓦森纳协定》。Crypto AG(瑞士通信及信息安全公司)出口的加密机中含有NSA的后门就是个绝佳案例。其他不那么出名的例子还有一些。


有多少数学后门存在?


我们很难确知实现后门和数学后门的普遍程度和重要性。证明后门的存在是个很困难的数学问题。但分析国际规则就能很清楚地看出,至少出口的加密设备/技术中是有后门的。更令人担忧的是,大众监视的环境下,国内使用的加密技术中会不会也有后门?


那么,同行审查能不能免除数学后门呢?


菲利奥尔表示,这恐怕需要改革:


能够证明安全的“防御”远比能够证明不安全的“攻击”要难实现得多。最大的问题在于,学术上对安全证明困难度的忽视,造成我们都把“没有证据证明不安全”,直接当成了“安全的证据”。


攻击者不会把自己能做的所有事都公布出来,尤其是在情报机构势力庞大的密码学方面。于是,专家和学术研究界只能参考已知的攻击案例。想象一下NSA这种40年来随时有300名最聪明的数学家为其服务的机构能产出什么?那就是整套数学知识全集啊!


菲利奥尔还认为,作为行业标准被广泛审查过的AES算法,也未必安全,虽然他并没有证据证明该算法不安全。


即便我不能证明AES有漏洞,但也没人能证明这算法里就没有漏洞。老实说,美国会提供一个够安全的军用级加密算法而不施以任何形式的控制?反正我是不信的


AES竞赛本就是由NIST组织的,还有NSA的技术支持(这都是众所周知的了)。在恐怖主义威胁甚嚣尘上的时代,美国才不会蠢到不去筹备作为常规武器“对策”的东西呢。像美国、英国、德国、法国等有点儿体面的国家,都不会在有高安全需求的事务上使用外国算法。他们强制使用国产产品和标准——从算法到其实现。


加密算法的选择、分析和标准化方式都需要改革。这得是个主要由开放密码社区驱动的,完全开放的过程。


http://mp.weixin.qq.com/s/7r-CBA6VLvSrlayMEVqYzA


政府和情报机构力图控制或绕过对数据及通信的加密防护,而给加密算法开个后门,被认为是实现加密控制的最佳办法。安全研究人员常会找寻加密算法实现中的漏洞,但却不会投入太多精力在查找数学后门上。


在加密防护上,研究人员开始验证信息安全交换和电子商务的支撑技术。埃里克·菲利奥尔,法国高等计算机、电子及自动化学院(ESIEA)操作密码学及病毒学实验室研究主管。他认为,只有在协议/实现/管理层面的后门实现被普遍考虑到了,而在查找数学后门或设计后门上投入的努力,还远远不够。


上周举行的欧洲黑帽大会上,菲利奥尔和他的同事阿诺德·般涅尔做了演讲,题为“加密系统设计后门——我们能信任外国加密算法吗?”,阐述了设计数学后门的可能性。


演讲中,两位研究人员提出了BEA-1块加密算法。该算法类似AES,但含有一个可供进行有效密码分析的数学后门。


两位法国密码学家解释道:“在不知道我们后门的情况下,BEA-1成功通过了所有统计检验和密码分析,NIST和NSA都正式考虑进行加密验证了。尤其是,BEA-1算法(80位块大小,120位密钥,11轮加密)本就是为抵御线性和差分密码分析而设计的。我们的算法在2017年2月公开,没人证明该后门可被轻易检测到,也没人展示过其利用方法。”


他们是如何做到的


黑帽大会的演讲中,菲利奥尔和般涅尔公开了该有意设置的后门,演示了如何利用该后门以区区600KB数据(300KB明文+300KB密文),在10秒钟内恢复出120位的密钥。这就是个概念验证,还有更复杂的后门可以被构造出来。


往算法中插入后门,和检测并证明后门的存在之间,在数学上是非常不对称的。也就是说,我们必须创建某种概念上的单向函数。


菲利奥尔研究加密算法数学后门多年,今年早些时候还发表了一篇关于块加密算法潜在问题的论文。


为什么即便在研究领域,数学也不流行


研究数学后门非常困难,吸引不了需要在时髦话题上频繁发表论文的研究人员。此类研究基本上也就是在情报机构(GCHQ、NSA等)的研发实验室做做,而且更多是后门的设计而非检测。


斯诺登爆料NSA花1000万美元,让 RSA Security 在其加密工具集中,默认使用脆弱的双椭圆曲线随机数生成算法(Dual_EC_DRBG)。这就展现出数学后门,或者设计后门,不只存在于理论上,而是很现实的东西。并且,Dual_EC_DRBG不是个案。


数学后门的例子有很多,但只有少数几个为人所知。


我确信所有出口版加密系统都会以某种方式嵌入后门,这直接违反了《瓦森纳协定》。Crypto AG(瑞士通信及信息安全公司)出口的加密机中含有NSA的后门就是个绝佳案例。其他不那么出名的例子还有一些。


有多少数学后门存在?


我们很难确知实现后门和数学后门的普遍程度和重要性。证明后门的存在是个很困难的数学问题。但分析国际规则就能很清楚地看出,至少出口的加密设备/技术中是有后门的。更令人担忧的是,大众监视的环境下,国内使用的加密技术中会不会也有后门?


那么,同行审查能不能免除数学后门呢?


菲利奥尔表示,这恐怕需要改革:


能够证明安全的“防御”远比能够证明不安全的“攻击”要难实现得多。最大的问题在于,学术上对安全证明困难度的忽视,造成我们都把“没有证据证明不安全”,直接当成了“安全的证据”。


攻击者不会把自己能做的所有事都公布出来,尤其是在情报机构势力庞大的密码学方面。于是,专家和学术研究界只能参考已知的攻击案例。想象一下NSA这种40年来随时有300名最聪明的数学家为其服务的机构能产出什么?那就是整套数学知识全集啊!


菲利奥尔还认为,作为行业标准被广泛审查过的AES算法,也未必安全,虽然他并没有证据证明该算法不安全。


即便我不能证明AES有漏洞,但也没人能证明这算法里就没有漏洞。老实说,美国会提供一个够安全的军用级加密算法而不施以任何形式的控制?反正我是不信的


AES竞赛本就是由NIST组织的,还有NSA的技术支持(这都是众所周知的了)。在恐怖主义威胁甚嚣尘上的时代,美国才不会蠢到不去筹备作为常规武器“对策”的东西呢。像美国、英国、德国、法国等有点儿体面的国家,都不会在有高安全需求的事务上使用外国算法。他们强制使用国产产品和标准——从算法到其实现。


加密算法的选择、分析和标准化方式都需要改革。这得是个主要由开放密码社区驱动的,完全开放的过程。

这篇关于后门之王:谈一谈加密算法中的数学后门的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/809706

相关文章

OSG数学基础:坐标系变换

三维实体对象需要经过一系列的坐标变换才能正确、真实地显示在屏幕上。在一个场景中,当读者对场景中的物体进行各种变换及相关操作时,坐标系变换是非常频繁的。坐标系变换通常包括:世界坐标系-物体坐标系变换、物体坐标系-世界坐标系变换和世界坐标系-屏幕坐标系变换(一个二维平面坐标系,即显示器平面,是非常标准的笛卡尔坐标系的第一象限区域)。 世界坐标系-物体坐标系变换 它描述的问题主要是关于物体本身的

OSG数学基础:坐标系统

坐标系是一个精确定位对象位置的框架,所有的图形变换都是基于一定的坐标系进行的。三维坐标系总体上可以分为两大类:左手坐标系和右手坐标系。常用的坐标系:世界坐标系、物体坐标系和摄像机坐标系。 世界坐标系 世界坐标系是一个特殊的坐标系,它建立了描述其他坐标系所需要的参考框架。从另一方面说,能够用世界坐标系来描述其他坐标系的位置,而不能用更大的、外部的坐标系来描述世界坐标系。世界坐标系也被广泛地

常用加密算法之 RSA 简介及应用

引言 相关博文: Spring Boot 开发 – 常用加密算法简介(一)常用加密算法之 SM4 简介及应用 一、RSA算法简介 RSA (Rivest-Shamir-Adleman) 算法是一种非对称加密技术,由Ron Rivest、Adi Shamir和Leonard Adleman在1977年发明。它基于大数质因数分解的困难性,提供了一种安全的数据加密和解密方法。 1. 密钥生成

2023-2024 学年第二学期小学数学六年级期末质量检测模拟(制作:王胤皓)(90分钟)

word效果预览: 一、我会填 1. 1.\hspace{0.5em} 1. 一个多位数,亿位上是次小的素数,千位上是最小的质数的立方,十万位是 10 10 10 和 15 15 15 的最大公约数,万位是最小的合数,十位上的数既不是质数也不是合数,这个数是 ( \hspace{4em} ),约等于 ( \hspace{1em} ) 万 2. 2.\hspace{0.5em} 2.

Program-of-Thoughts(PoT):结合Python工具和CoT提升大语言模型数学推理能力

Program of Thoughts Prompting:Disentangling Computation from Reasoning for Numerical Reasoning Tasks github:https://github.com/wenhuchen/Program-of-Thoughts 一、动机 数学运算和金融方面都涉及算术推理。先前方法采用监督训练的形式,但这种方

【数学】100332. 包含所有 1 的最小矩形面积 II

本文涉及知识点 数学 LeetCode100332. 包含所有 1 的最小矩形面积 II 给你一个二维 二进制 数组 grid。你需要找到 3 个 不重叠、面积 非零 、边在水平方向和竖直方向上的矩形,并且满足 grid 中所有的 1 都在这些矩形的内部。 返回这些矩形面积之和的 最小 可能值。 注意,这些矩形可以相接。 示例 1: 输入: grid = [[1,0,1],[1,1,1]]

组合数学、圆排列、离散数学多重集合笔记

自用 如果能帮到您,那也值得高兴 知识点 离散数学经典题目 多重集合组合 补充容斥原理公式 隔板法题目 全排列题目:

RSA非对称的加密算法

首先RSA是一个非对称的加密算法,所以在使用该算法加密解密之前,必须先行生成密钥对,包括公钥和私钥 JDK中提供了生成密钥对的类KeyPairGenerator,实例如下: public static Map<String, Object> genKeyPair() throws Exception {   // 获取公钥私钥密钥对的生成器   KeyPairGenerator kpg

数学建模 —— 查找数据

目录 百度搜索技巧 完全匹配搜索:查询词的外边加上双引号“ ” 标题必含关键词:查询词前加上intitle: 搜索文档:空格再输入filetype:文件格式 去掉不想要的:查询词后面加空格后加减号与关键字  知网查文献 先看知网的硕博士论文 高级检索:想了解神经网络在信贷策略中的应用,想找一些相关的硕博论文   其他网站查文献  谷歌学术镜像 Open Access Libr

数学位运算

位运算 位运算有&,|,^,<<和>> 按位与 参加运算的两个数据,按二进制位进行“与”运算。 运算规则:0&0=0; 0&1=0; 1&0=0; 1&1=1; 即:两位同时为“1”,结果才为“1”,否则为0 例如: 11 & 10    即 1011 & 1010 = 1010    因此,11 & 10的值得10 按位或 参加运算的两个对象,按二进制位进行“或”运算。 运算规则:0|