异构计算关键技术之多线程技术(四)

2024-03-14 18:44

本文主要是介绍异构计算关键技术之多线程技术(四),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

异构计算关键技术之多线程技术(四)

最近遇到了一个项目,需要写一个用户态的测试程序(独立进程),用来测试FPGA PCIe DMA的性能,具体的要求如下:

1. 需要一个主线程,用来配置FPGA的寄存器,同时启动从线程;2. 如果不进行人为干涉,子线程一直进行FPGA的相关操作,比如下发trigger信号、配置burst次数、数据长度;3. 进行人为干涉,子线程退出,并返回子线程执行的一些信息,提供给主线程做统计和计算信息;

下面我们直接给出相关的核心代码,结合线程的理论进行分析:

...
...static int run = 0;
static int round = 0;...typedef struct _param
{struct util_mem *util;int burst;int len;
}param;void *
recv_perf(void *data)
{...cpu_set_t mask;CPU_ZERO(&mask);CPU_SET(14, &mask);sched_setaffinity(0, sizeof(cpu_set_t), &mask);.../* len and burst*/reg_write(..., addr, (p->len&0x0000ffff)|((p->burst&0x0000ffff)<<16)));...while(run) {/* trigger */reg_write(..., addr, &rdata);while(times < p->burst) {data_size = recv(...,...,...);if (data_size == xxx) {...times++;}}times = 0;cnt++;}round = cnt * p->burst;pthread_exit(0);
}int main(int argc, char **argv)
{...pthread_t tid;ret = start(...);ret = pthread_create(&tid, NULL, recv_perf, &data);if (ret < 0) {}else {}pthread_detach(tid);while(1) {ch = getchar();if (ch = 's') {run = 0;...break;}}...avg = (float)recv_total/round;...
}

一、代码设计分析

这段代码非常实用,整体思想如下:

  • 主线程main函数,首先做了FPGA系统的一些初始化功能,然后起了一个从线程recv_perf();

  • 从线程主要是根据传递的参数发送给FPGA,让FPGA一直做DMA操作;

  • 主从线程分离detach();

  • 主线程while(1)循环,用来控制从线程的结束,同时通过全局变量进行传递参数;

  • 最后计算FPGA的统计信息;


在这里插入图片描述

二、C++多线程编程知识点归纳

1. 主线程和子线程的区别

我们先看看线程是如何创建起来的:

进程仅仅是一个容器,包含了线程运行中所需要的数据结构等信息。一个进程创建时,操作系统会创建一个线程,这就是主线程。而其他的从线程,却要主线程的代码来创建,也就是由程序员来创建。

主线程

main()函数均视为主线程,除了“不包含在thread里面的程序”,均视为主线程;

子线程

包含在thread = new thread()里面均视为子线程;

main函数

main()函数作为入口开始运行,是一个进程,同时也是一个线程。在现在的操作系统中,都是多线程的。

2. 线程的创建与参数传递

这个实例中,我们需要做一个子线程,用来一直执行FPGA的操作,同时我们需要传递FPGA的配置参数,下发给FPGA寄存器空间。

linux下的多线程程序,需要使用pthread.h,链接时需要使用libthread.a。

线程的创建需要通过pthread_create来完成,声明如下:

#include <pthread.h>int pthread_create(pthread_t *thread, pthread_attr_t *attr, void* (start_routine)(void*), void *arg);
  • thread:是一个指针,线程创建成功时,用以返回创建的线程ID;
  • attr:线程属性,NULL表示使用默认;
  • start_rountine:函数指针,指被创建的线程函数;
  • arg:该参数指向传递给线程函数的参数;

实例中,接收函数recv_perf(),同时传递的参数结构体data;

3. 线程的退出

多线程中,终止执行的方式有3种,分别是:

1. 线程执行完成后,自行终止;
2. 线程执行种,遇到了pthread_exit()或者return;
3. 线程在执行过程种,接收到了其他线程发送的“终止执行”的信息,然后终止执行;

第一种很容易理解,不做讨论。

pthread_exit()和return
:

return

return 关键字用于终止函数执行,必要时还能将函数的执行结果反馈给调用者。
return 关键字不仅可以用于普通函数,线程函数中也可以使用它。

pthread_exit()

<pthread.h>头文件中,提供有一个和 return 关键字相同功能的 pthread_exit() 函数。
和之前不同,pthread_exit() 函数只适用于线程函数,而不能用于普通函数。
void pthread_exit(void*retval);

retval是void*类型的指针,可以指向任何类型的数据,它指向的数据作为线程退出的返回值。

pthread_exit()和return()的区别

  • return:不仅会终止主线程执行,还会终止其他子线程的执行;
  • pthread_exit():只会终止当前线程,不会影响到其他线程的执行;

实际场景中,想要终止某个子线程,强烈建议使用pthread_exit()函数。

pthread_cancel
:

一个线程还可以向另一个线程发送“终止执行”的信号(后续称为“cancel”信号),这时候需要调用pthread_cancel()函数。


int pthread_cancel(pthread_t thread);

参数thread用于接收cancel信号的目标线程。

对于接收cancel信号后,结束执行的目标线程,等同于该线程自己执行如下语句:

pthread_exit(PTHREAD_CANCELED);

也就是说,当一个线程被强制终止时,它会返回pthread_cancel这个宏。

然后对于我们这个设计,巧妙的使用了run这个全局变量,用来控制子线程执行,同时利用全局变量来进行计算,是个很好的策略。

这是因为子线程在detach()以后,就无法再返回子线程的资源,会出现core。

4. detach()

detach()的作用是将子线程和主线程的关联分离,也就是说detach()后子线程在后台独立继续执行,主线程无法再获得子线程的控制权。

即使主线程结束,子线程未执行也不会结束。当主线程结束时,由运行时库负责清理和子线程相关的资源。

detach()同时也带来了一些问题,如子线程要访问主线程的对象,而主线中的对象又因为主线程结束而被销毁,导致程序崩溃。

5. 把进程/线程绑定到特定的cpu核上运行

某个进程需要较高的运行效率时,就有必要考虑将其绑定到单独的核上运行,以减小由于在不同的核上调度造成的开销。

把某个进程/线程绑定到特定的cpu核上后,该进程就会一直在此核上运行,不会再被操作系统调度到其他核上。但绑定的这个核还是可能会被调度运行其他应用程序的。(可以做隔离)

查看绑定情况

taskset -p pid

显示的是十进制,需要转换成2进制,每个1对应一个cpu(cpu从0开始)

启动时绑定

taskset -c xxx,yyy ./pcie_perf&

启动应用程序的时候绑定。

启动后绑定

taskset -cp 1,2,5,11 9865  将进程9864绑定到#1、#2、#5、#11号核上面。taskset -cp 1,2,5-11 9865  将进程9864绑定到#1、#2、#5~#11号核上面。

代码绑定

...
cpu_set_t mask;
CPU_ZERO(&mask);
CPU_SET(14, &mask);
sched_setaffinity(0, sizeof(cpu_set_t), &mask);
...

三、未完待续

欢迎关注知乎:北京不北,+vbeijing_bubei欢迎+V:beijing_bubei欢迎关注douyin:near.X (北京不北)获得免费答疑,长期技术交流。

四、参考文献

https://blog.csdn.net/qq_41854911/article/details/118718824

这篇关于异构计算关键技术之多线程技术(四)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/809359

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

Python中多线程和多进程的基本用法详解

《Python中多线程和多进程的基本用法详解》这篇文章介绍了Python中多线程和多进程的相关知识,包括并发编程的优势,多线程和多进程的概念、适用场景、示例代码,线程池和进程池的使用,以及如何选择合适... 目录引言一、并发编程的主要优势二、python的多线程(Threading)1. 什么是多线程?2.

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

C#多线程编程中导致死锁的常见陷阱和避免方法

《C#多线程编程中导致死锁的常见陷阱和避免方法》在C#多线程编程中,死锁(Deadlock)是一种常见的、令人头疼的错误,死锁通常发生在多个线程试图获取多个资源的锁时,导致相互等待对方释放资源,最终形... 目录引言1. 什么是死锁?死锁的典型条件:2. 导致死锁的常见原因2.1 锁的顺序问题错误示例:不同

浅析Rust多线程中如何安全的使用变量

《浅析Rust多线程中如何安全的使用变量》这篇文章主要为大家详细介绍了Rust如何在线程的闭包中安全的使用变量,包括共享变量和修改变量,文中的示例代码讲解详细,有需要的小伙伴可以参考下... 目录1. 向线程传递变量2. 多线程共享变量引用3. 多线程中修改变量4. 总结在Rust语言中,一个既引人入胜又可