深度学习总结(2016.9--2016.10)

2024-03-14 15:18

本文主要是介绍深度学习总结(2016.9--2016.10),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原本的打算是参加上海Bot大赛,在比赛中学习一下相关知识,就是想入门而已。开学半个月一直没找到状态,只是上上课。后来在师兄的帮助下,开始逐渐着手比赛的事情,虽然最终没有赶上在比赛截至前提交一版测试。但学了不少,不亏!

大致记录一下这一个月做的事情:

keras篇

  • win10下先配置keras,看keras文档,用theano后端跑了mnsit数据集,Dogs and Cats 数据集
  • 熟悉keras后,搭VGG16网络,加载全连接层之前的参数,自带函数无法做到
  • 加载部分参数,花了很久的时间才搞定,最终,强行一层一层的加载,全链接层用[-0.1,0.1]随机数,过程中学习了.h5文件的写入和读取
  • 重载参数参数后用数据集训练模型,但acc数值一直和瞎猜的一样,三类的话,acc就是0.33,同时loss在一个epoch后,数值上升,并且保持不变!!!一直都不变!!!(过了一个月,发现是lr太高了,把lr调低模型就开始收敛了)找了很久没有找到原因,一方面是知识匮乏,一方面keras封装的太高层了,完全看不到实现细节,最终放弃keras,转向了caffe。

caffe篇

  • win10下一晚上配好了caffe的cpu版本和gpu版本,感觉比keras好配置多了。查了资料学习如何使用,还是mnist入手,结果全是命令行一脸懵逼,好在搞清楚后确实方便很多,一行代码都没写,就是转数据成lmdb,设置各种路径,速度caffe确实比theano快,只不过命令行显示信息不如keras好看
  • 会用caffe后,改VGG16模型,重载参数,最后一层全连接层(fc3层)随机初始化参数,fc1和fc2层重载参数并小lr更新,fc3层大lr更新,一切顺利,训练了6个epoch后top1命中0.8,top5命中0.95
  • 想办法提高acc,之后就做了很多实验,如下:
  • 师兄说试试增加数据量,全连接层参数全部随机初始化,只训练最后三层。
  • 增加数据量方法:先保持长宽比调整原图片最短边为256,用边长224的正方形对图片进行crop,四个角+正中间,再左右反转,总共10张(原本还有旋转等,但一算扩大了134倍,有4T数据,放不下,就先扩大10倍)
  • train_set有12W张图片,大小12G,扩充数据花了4个小时,扩充后大小25G,再转成lmdb格式,用时10小时,大小260G。
  • 最后3层全连接层随机初始化参数,用260G数据训练30个epoch后准确率acc : 0.755080465171,比之前的还差…………

  • 就开始找原因,先后做了很多实验(以下实验结果所用模型为120W数据训练最后三层fc层,30epoch所得的模型):

    • 实验1:从train集合中抽出100张进行预测,统计acc,score=0.96
      这里写图片描述

    • 实验2:测试时,将测试图片直接压缩到224*224进行测试,统计acc=0.797251262775(这种方法acc比实验3的acc高)

    • 实验3:测试时,将每张测试图片保持长宽比调整到最短边为256,对四个角+中心用224*224大小的正方形进行crop,用crop出来的5个图片分别进行预测,将5个小图片预测出来的置信度对应相加再除以5(保证总的置信度为1),取置信度最高的类别为预测出来的类别,统计acc=0.755080465171

    • 实验4:结合实验2和实验3,将实验2和3预测出的置信度对应相加,平均,以计算出来的置信度为最终置信度,取最高为预测类别,统计acc=0.814049101374(这种方法准确率最高)

    • 实验5:做一个12*12的表格,行数表示真实的图片类别,列表示预测的类别,统计每种情况的图片数量(贴一个120W张图片30个epoch模型的结果)

      predict_pic_labels_32_use_mix_30_epoch_probability_12
      -calculate score test score:0.843392458593 pics:8513  time: 6.904585 s
      top 1 count_num: 6930 sum_num: 8513 acc : 0.814049101374
      test   table is :
      [ 989    3    0    0   15    1   16    4    3    4    1   10]
      [  23  476    7    4   12    3   32   63    7   13    3   38]
      [   3    5  605    3    3   21   12    1   63   96    7   10]
      [  13   13   13  632   17   66   23    7    3   12   15   22]
      [  15    1    2   12  886   34   30    6   18   22    7   11]
      [  13    5   10   17   20  341   22    3    7   29   17   11]
      [  10    6    2    6   21    3 1096    8    5    0    2    7]
      [  15   55    3    3    4    9   19  284    7   10    2   13]
      [  16    0   20    0   11    3   25    3  846   18    3    7]
      [  16    0   17    0    9    6    8    3    5   91    3   10]
      [   0    3    1    7    7   29   11    1    9   35  449    5]
      [   6   14    7   11    3    8   10    4    4    8    4  236]
      
    • 实验6:将test集合中错误分类的图片按类别输出,观察被分错的图片都有神马特点(发现大部分是动画图片)

      test_wrong_pic_6(cat)real_animaltoy_model _animalcartoon_animal
      sum_num=38813616236
      percent36%4%60%
    • 实验7:随机从train集合和test集合中抽出500张图片,分别人眼统计真实动物图片数量、玩具模型动物图片数量、动画动物图片数量
      train集合12W张图片,结果:

      train_set_12Wreal_animaltoy_model _animalcartoon_animal
      train_set_500_149802
      train_set_500_249604
      train_set_500_349316
      percent99.13%0.07%0.8%

      test集合8513张图片,结果:

      test_set_8513real_animaltoy_model _animalcartoon_animal
      test_set_500_14191071
      test_set_500_24961268
      percent84%2%14%
    • 实验8:从test集合中分别拿100张真实动物图片、玩具模型动物图和动画动物图片,进行测试统计acc

      test_set_100real_animaltoy_model _animalcartoon_animal
      acc84%52%35%
    • 结论:综合实验6、实验7和实验8,acc不高的主要原因就是训练集中卡通图片几乎没有,测试集中出现了许多卡通图片。次要原因是细粒度分类效果不好,实验1的结果就可以看出。
  • 接下来的工作就是两个方向,一个细粒度分类,一个domain transfer,师兄讲先看看domain transfer方面的论文吧

这篇关于深度学习总结(2016.9--2016.10)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/808825

相关文章

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和