死磕 java同步系列之StampedLock源码解析

2024-03-14 13:18

本文主要是介绍死磕 java同步系列之StampedLock源码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题

(1)StampedLock是什么?

(2)StampedLock具有什么特性?

(3)StampedLock是否支持可重入?

(4)StampedLock与ReentrantReadWriteLock的对比?

简介

StampedLock是java8中新增的类,它是一个更加高效的读写锁的实现,而且它不是基于AQS来实现的,它的内部自成一片逻辑,让我们一起来学习吧。

StampedLock具有三种模式:写模式、读模式、乐观读模式。

ReentrantReadWriteLock中的读和写都是一种悲观锁的体现,StampedLock加入了一种新的模式——乐观读,它是指当乐观读时假定没有其它线程修改数据,读取完成后再检查下版本号有没有变化,没有变化就读取成功了,这种模式更适用于读多写少的场景。

使用方法

让我们通过下面的例子了解一下StampedLock三种模式的使用方法:

class Point {private double x, y;private final StampedLock sl = new StampedLock();void move(double deltaX, double deltaY) {// 获取写锁,返回一个版本号(戳)long stamp = sl.writeLock();try {x += deltaX;y += deltaY;} finally {// 释放写锁,需要传入上面获取的版本号sl.unlockWrite(stamp);}}double distanceFromOrigin() {// 乐观读long stamp = sl.tryOptimisticRead();double currentX = x, currentY = y;// 验证版本号是否有变化if (!sl.validate(stamp)) {// 版本号变了,乐观读转悲观读stamp = sl.readLock();try {// 重新读取x、y的值currentX = x;currentY = y;} finally {// 释放读锁,需要传入上面获取的版本号sl.unlockRead(stamp);}}return Math.sqrt(currentX * currentX + currentY * currentY);}void moveIfAtOrigin(double newX, double newY) {// 获取悲观读锁long stamp = sl.readLock();try {while (x == 0.0 && y == 0.0) {// 转为写锁long ws = sl.tryConvertToWriteLock(stamp);// 转换成功if (ws != 0L) {stamp = ws;x = newX;y = newY;break;}else {// 转换失败sl.unlockRead(stamp);// 获取写锁stamp = sl.writeLock();}}} finally {// 释放锁sl.unlock(stamp);}}
}

从上面的例子我们可以与ReentrantReadWriteLock进行对比:

(1)写锁的使用方式基本一对待;

(2)读锁(悲观)的使用方式可以进行升级,通过tryConvertToWriteLock()方式可以升级为写锁;

(3)乐观读锁是一种全新的方式,它假定数据没有改变,乐观读之后处理完业务逻辑再判断版本号是否有改变,如果没改变则乐观读成功,如果有改变则转化为悲观读锁重试;

下面我们一起来学习它的源码是怎么实现的。

源码分析

主要内部类

static final class WNode {// 前一个节点volatile WNode prev;// 后一个节点volatile WNode next;// 读线程所用的链表(实际是一个栈结果)volatile WNode cowait;    // list of linked readers// 阻塞的线程volatile Thread thread;   // non-null while possibly parked// 状态volatile int status;      // 0, WAITING, or CANCELLED// 读模式还是写模式final int mode;           // RMODE or WMODEWNode(int m, WNode p) { mode = m; prev = p; }
}

队列中的节点,类似于AQS队列中的节点,可以看到它组成了一个双向链表,内部维护着阻塞的线程。

主要属性

// 一堆常量
// 读线程的个数占有低7位
private static final int LG_READERS = 7;
// 读线程个数每次增加的单位
private static final long RUNIT = 1L;
// 写线程个数所在的位置
private static final long WBIT  = 1L << LG_READERS;  // 128 = 1000 0000
// 读线程个数所在的位置
private static final long RBITS = WBIT - 1L;  // 127 = 111 1111
// 最大读线程个数
private static final long RFULL = RBITS - 1L;  // 126 = 111 1110
// 读线程个数和写线程个数的掩码
private static final long ABITS = RBITS | WBIT;  // 255 = 1111 1111
// 读线程个数的反数,高25位全部为1
private static final long SBITS = ~RBITS;  // -128 = 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1000 0000// state的初始值
private static final long ORIGIN = WBIT << 1;  // 256 = 1 0000 0000
// 队列的头节点
private transient volatile WNode whead;
// 队列的尾节点
private transient volatile WNode wtail;
// 存储着当前的版本号,类似于AQS的状态变量state
private transient volatile long state;

通过属性可以看到,这是一个类似于AQS的结构,内部同样维护着一个状态变量state和一个CLH队列。

构造方法

public StampedLock() {state = ORIGIN;
}

state的初始值为ORIGIN(256),它的二进制是 1 0000 0000,也就是初始版本号。

writeLock()方法

获取写锁。

public long writeLock() {long s, next;// ABITS = 255 = 1111 1111// WBITS = 128 = 1000 0000// state与ABITS如果等于0,尝试原子更新state的值加WBITS// 如果成功则返回更新的值,如果失败调用acquireWrite()方法return ((((s = state) & ABITS) == 0L &&U.compareAndSwapLong(this, STATE, s, next = s + WBIT)) ?next : acquireWrite(false, 0L));
}

我们以state等于初始值为例,则state & ABITS的结果为:

StampedLock

此时state为初始状态,与ABITS与运算后的值为0,所以执行后面的CAS方法,s + WBITS的值为384 = 1 1000 0000。

到这里我们大胆猜测:state的高24位存储的是版本号,低8位存储的是是否有加锁,第8位存储的是写锁,低7位存储的是读锁被获取的次数,而且如果只有第8位存储写锁的话,那么写锁只能被获取一次,也就不可能重入了。

到底我们猜测的对不对呢,走着瞧^^

我们接着来分析acquireWrite()方法:

(手机横屏看源码更方便)

private long acquireWrite(boolean interruptible, long deadline) {// node为新增节点,p为尾节点(即将成为node的前置节点)WNode node = null, p;// 第一次自旋——入队for (int spins = -1;;) { // spin while enqueuinglong m, s, ns;// 再次尝试获取写锁if ((m = (s = state) & ABITS) == 0L) {if (U.compareAndSwapLong(this, STATE, s, ns = s + WBIT))return ns;}

这篇关于死磕 java同步系列之StampedLock源码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/808541

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r