NASA数据集——2017年美国阿拉斯加以及加拿大北部二氧化碳探测仪监测的大气后向散射系数剖面图数据集

本文主要是介绍NASA数据集——2017年美国阿拉斯加以及加拿大北部二氧化碳探测仪监测的大气后向散射系数剖面图数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来自二氧化碳探测仪的大气后向散射系数剖面图,2017年

本数据集提供了2017-07-20至2017-08-08期间在美国阿拉斯加以及加拿大育空地区和西北地区上空进行的二氧化碳夜间、白天和季节排放主动传感(ASCENDS)部署期间收集的大气后向散射系数剖面图。这些剖面由一架 DC-8 飞机上搭载的二氧化碳探测仪激光雷达仪器测量。机载二氧化碳探测仪是一种脉冲式多波长集成路径差分吸收激光雷达,可估算从飞机到散射表面的天底路径上的柱均干空气二氧化碳混合比(XCO2)。除 XCO2 外,激光雷达接收器还记录了激光脉冲在大气中传播时的时间分辨大气反向散射信号强度。激光雷达原始数据被转换为大气后向散射截面积和双向大气传输,也称为衰减后向散射剖面。这些 ASCENDS 飞行与 2017 年北极-北方脆弱性实验(ABoVE)活动协调进行,并以 ICARTT 格式提供。Mapmost login

本数据集提供了2017-07-20至2017-08-08期间在美国阿拉斯加以及加拿大育空地区和西北地区上空进行的二氧化碳夜间、白天和季节排放主动传感(ASCENDS)部署期间收集的大气后向散射系数剖面图。这些剖面由一架 DC-8 飞机上搭载的二氧化碳探测仪激光雷达仪器测量。机载二氧化碳探测仪是一种脉冲式多波长集成路径差分吸收激光雷达,可估算从飞机到散射表面的天底路径上的柱均干空气二氧化碳混合比(XCO2)。除 XCO2 外,激光雷达接收器还记录了激光脉冲在大气中传播时的时间分辨大气反向散射信号强度。激光雷达原始数据被转换为大气后向散射截面积和双向大气传输,也称为衰减后向散射剖面。这些 ASCENDS 飞行与 2017 年北极-北方脆弱性实验(ABoVE)活动协调进行,并以 ICARTT 格式提供。
本数据集中包含 16 个 ICARTT 格式(*.ict)的数据文件。此外还包括 Matlab 脚本,用于对 2017 年 ABoVE 机载活动期间二氧化碳激光探测仪测量的大气后向散射剖面进行数据处理。

北极-北方脆弱性实验(ABoVE)是美国国家航空航天局(NASA)陆地生态计划的一项实地活动,于2016年至2021年期间在阿拉斯加和加拿大西部进行。ABoVE 的研究将基于实地的过程级研究与机载和卫星传感器获得的地理空间数据产品联系起来,为提高分析和建模能力奠定了基础,而分析和建模能力是了解和预测生态系统反应及社会影响所必需的。

Platforms

NASA DC-8

Instruments

BACKSCATTER LIDAR

Data Formats

Distribution: ICARTT

Temporal Extent

2017-07-20 to 2017-08-08

Data Centers

ORNL_DAAC

Spatial Extent

Bounding Box: (71.27°, -98.15°), (34.59°, -165.68°)

数据属性

VariableUnitsDescription
Start_UTCsSeconds since midnight UTC on flight date
Day_Of_YeardDay of year, beginning January 1
LatitudedegreesLatitude
LongitudedegreesLongitude
MSL_GPS_AltitudemSensor height above mean sea level
HAE_GPS_AltitudemSensor height above WGS84 ellipsoid
Pressure_AltitudeftAircraft altitude from air pressure sensor
Radar_AltitudeftAircraft altitude from radar
Ground_Speedm s-1Aircraft ground speed
True_Air_SpeedktsAir speed in knots
Indicated_Air_SpeedktsAir speed in knots
Mach_NumbermachAir speed in mach number
Vertical_Speedm s-1Vertical speed
True_HeadingdegreesAircraft heading, 0-360 degrees, clockwise from +y
Track_Angledegrees Aircraft track, 0-360 degrees, clockwise from +y
Drift_Angledegrees Aircraft drift, +/-180 degrees, clockwise from +y
Pitch_Angledegrees Aircraft pitch, +/-180 degrees, up+
Roll_Angledegrees Aircraft roll, +/-180 degrees, right+
Static_Air_Tempdegrees CelsiusAir temperature
Potential_Tempdegrees KelvinAir temperature
Dew_Pointdegrees CelsiusDew point temperature
Total_Air_Tempdegrees CelsiusAir temperature
IR_Surf_Tempdegrees CelsiusSurface temperature
Static_PressurembAir pressure
Cabin_PressurembAir pressure
Wind_Speedm s-1 Wind speed, limited to where Roll_Angle <= 5 degrees
Wind_DirectiondegreesWind direction, 0-360 degrees, clockwise from +y
Solar_Zenith_AngledegreesSolar zenith angle
Aircraft_Sun_ElevationdegreesAircraft sun elevation angle
Sun_AzimuthdegreesSun azimuth angle
Aircraft_Sun_AzimuthdegreesAircraft-sun azimuth angle
Mixing_Ratiog kg-1Atmospheric mixing ratio
Part_Press_Water_VapormbPartial pressure of water vapor
Sat_Vapor_Press_H2OmbSaturated vapor pressure over liquid water
Sat_Vapor_Press_IcembSaturated vapor pressure over ice
Relative_Humiditypercent

Relative humidity

代码:

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="ABoVE_ASCENDS_Backscatter_2051
",cloud_hosted=True,bounding_box=(-165.68, 34.59, -98.15, 71.27),temporal=("2017-07-20", "2017-08-08"),count=-1,  # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")

下图显示监测的地面轨迹的地图,以及概述每次飞行的表格。表格中的颜色与地面轨迹中显示的颜色一致。 

 

数据下载链接

https://daac.ornl.gov/above/ABoVE_ASCENDS_Backscatter/

这篇关于NASA数据集——2017年美国阿拉斯加以及加拿大北部二氧化碳探测仪监测的大气后向散射系数剖面图数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/808114

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.

MySQL使用binlog2sql工具实现在线恢复数据功能

《MySQL使用binlog2sql工具实现在线恢复数据功能》binlog2sql是大众点评开源的一款用于解析MySQLbinlog的工具,根据不同选项,可以得到原始SQL、回滚SQL等,下面我们就来... 目录背景目标步骤准备工作恢复数据结果验证结论背景生产数据库执行 SQL 脚本,一般会经过正规的审批