在受污染的二叉树中查找元素(Lc1261)——DFS+哈希表

2024-03-14 06:20

本文主要是介绍在受污染的二叉树中查找元素(Lc1261)——DFS+哈希表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

给出一个满足下述规则的二叉树:

  1. root.val == 0
  2. 如果 treeNode.val == x 且 treeNode.left != null,那么 treeNode.left.val == 2 * x + 1
  3. 如果 treeNode.val == x 且 treeNode.right != null,那么 treeNode.right.val == 2 * x + 2

现在这个二叉树受到「污染」,所有的 treeNode.val 都变成了 -1

请你先还原二叉树,然后实现 FindElements 类:

  • FindElements(TreeNode* root) 用受污染的二叉树初始化对象,你需要先把它还原。
  • bool find(int target) 判断目标值 target 是否存在于还原后的二叉树中并返回结果。

示例 1:

输入:
["FindElements","find","find"]
[[[-1,null,-1]],[1],[2]]
输出:
[null,false,true]
解释:
FindElements findElements = new FindElements([-1,null,-1]); 
findElements.find(1); // return False 
findElements.find(2); // return True 

示例 2:

输入:
["FindElements","find","find","find"]
[[[-1,-1,-1,-1,-1]],[1],[3],[5]]
输出:
[null,true,true,false]
解释:
FindElements findElements = new FindElements([-1,-1,-1,-1,-1]);
findElements.find(1); // return True
findElements.find(3); // return True
findElements.find(5); // return False

示例 3:

输入:
["FindElements","find","find","find","find"]
[[[-1,null,-1,-1,null,-1]],[2],[3],[4],[5]]
输出:
[null,true,false,false,true]
解释:
FindElements findElements = new FindElements([-1,null,-1,-1,null,-1]);
findElements.find(2); // return True
findElements.find(3); // return False
findElements.find(4); // return False
findElements.find(5); // return True

提示:

  • TreeNode.val == -1
  • 二叉树的高度不超过 20
  • 节点的总数在 [1, 10^4] 之间
  • 调用 find() 的总次数在 [1, 10^4] 之间
  • 0 <= target <= 10^6

问题简要描述:还原二叉树并实现 FindElements 类 

Java

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class FindElements {Set<Integer> set = new HashSet<>();public FindElements(TreeNode root) {root.val = 0;dfs(root);}public boolean find(int target) {return set.contains(target);}void dfs(TreeNode root) {set.add(root.val);if (root.left != null) {root.left.val = 2 * root.val + 1;dfs(root.left);}if (root.right != null) {root.right.val = 2 * root.val + 2;dfs(root.right);}}
}/*** Your FindElements object will be instantiated and called as such:* FindElements obj = new FindElements(root);* boolean param_1 = obj.find(target);*/

 Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class FindElements:def __init__(self, root: Optional[TreeNode]):def dfs(root: Optional[TreeNode]):self.s.add(root.val)if root.left:root.left.val = root.val * 2 + 1dfs(root.left)if root.right:root.right.val = root.val * 2 + 2dfs(root.right)self.s = set()root.val = 0dfs(root)def find(self, target: int) -> bool:return target in self.s        # Your FindElements object will be instantiated and called as such:
# obj = FindElements(root)
# param_1 = obj.find(target)

TypeScript

/*** Definition for a binary tree node.* class TreeNode {*     val: number*     left: TreeNode | null*     right: TreeNode | null*     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {*         this.val = (val===undefined ? 0 : val)*         this.left = (left===undefined ? null : left)*         this.right = (right===undefined ? null : right)*     }* }*/class FindElements {private s = new Set();constructor(root: TreeNode | null) {const dfs = (root: TreeNode | null) => {this.s.add(root.val)if (root.left != null) {root.left.val = root.val * 2 + 1;dfs(root.left);}if (root.right != null) {root.right.val = root.val * 2 + 2;dfs(root.right);}}root.val = 0;dfs(root);        }find(target: number): boolean {return this.s.has(target);    }
}/*** Your FindElements object will be instantiated and called as such:* var obj = new FindElements(root)* var param_1 = obj.find(target)*/

这篇关于在受污染的二叉树中查找元素(Lc1261)——DFS+哈希表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/807486

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

hdu 2489 (dfs枚举 + prim)

题意: 对于一棵顶点和边都有权值的树,使用下面的等式来计算Ratio 给定一个n 个顶点的完全图及它所有顶点和边的权值,找到一个该图含有m 个顶点的子图,并且让这个子图的Ratio 值在所有m 个顶点的树中最小。 解析: 因为数据量不大,先用dfs枚举搭配出m个子节点,算出点和,然后套个prim算出边和,每次比较大小即可。 dfs没有写好,A的老泪纵横。 错在把index在d

poj 3050 dfs + set的妙用

题意: 给一个5x5的矩阵,求由多少个由连续6个元素组成的不一样的字符的个数。 解析: dfs + set去重搞定。 代码: #include <iostream>#include <cstdio>#include <set>#include <cstdlib>#include <algorithm>#include <cstring>#include <cm

ural 1149. Sinus Dances dfs

1149. Sinus Dances Time limit: 1.0 second Memory limit: 64 MB Let  An = sin(1–sin(2+sin(3–sin(4+…sin( n))…) Let  Sn = (…( A 1+ n) A 2+ n–1) A 3+…+2) An+1 For given  N print  SN Input One

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

leetcode105 从前序与中序遍历序列构造二叉树

根据一棵树的前序遍历与中序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。 例如,给出 前序遍历 preorder = [3,9,20,15,7]中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树: 3/ \9 20/ \15 7   class Solution {public TreeNode buildTree(int[] pr

哈希表的底层实现(1)---C++版

目录 哈希表的基本原理 哈希表的优点 哈希表的缺点 应用场景 闭散列法 开散列法 开放定值法Open Addressing——线性探测的模拟实现 超大重点部分评析 链地址法Separate Chaining——哈希桶的模拟实现 哈希表(Hash Table)是一种数据结构,它通过将键(Key)映射到值(Value)的方式来实现快速的数据存储与查找。哈希表的核心概念是哈希