本文主要是介绍现代通信原理14.1:正交向量空间与正交信号空间,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- 1、向量空间
- 1.1 向量空间的概念
- 1.2 向量的内积
- 1.3 向量的范数
- 1.4 标准正交向量组
- 1.5 Gram-Schmidt正交化
- 1.6 向量的正交表示
- 2、信号空间
- 2.1 信号的能量
- 2.2 信号的内积
- 2.3 信号的范数
- 2.4 信号的相关系数
- 2.5 信号的正交展开
- 2.6 信号的向量表示
1、向量空间
1.1 向量空间的概念
在线性代数中,我们学习了向量与向量空间。下面我们结合网上一些资料(例如https://blog.csdn.net/shinian1987/article/details/82529853等博客,百度百科等),对其进行简单回顾。
向量(或称为矢量),是具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。
下面我们来看向量的两种基本运算,即向量加法以及向量与标量相乘。
向量加法就是向量里的每一个分量对应相加,比如两个维度为 n n n的向量 u = [ u 1 , u 2 , ⋅ , u n ] {\bf u}=[u_1,u_2,\cdot,u_n] u=[u1,u2,⋅,un]和 v = [ v 1 , v 2 , ⋅ , v n ] {\bf v}=[v_1,v_2,\cdot,v_n] v=[v1,v2,⋅,vn]相加,可以得到
u + v = [ u 1 + v 1 , u 2 + v 2 , … , u n + v n ] {\bf u}+{\bf v}=[u_1+v_1,u_2+v_2,\ldots,u_n+v_n] u+v=[u1+v1,u2+v2,…,un+vn]向量与标量相乘,则为向量里的每一个分量与该标量相乘, 例如维度为 n n n的向量 u \bf u u与标量 k k k 相乘,可以得到:
k u = [ k u 1 , k u 2 , … , k u n ] . k{\bf u}=[ku_1,ku_2,\ldots,ku_n]. ku=[ku1,ku2,…,kun].
现在我们来看向量空间。在现实世界里,三维空间就是我们非常熟悉的一个空间,从数学上说,这是一个三维的欧几里德空间。我们不难发现,这个三维空间具有如下特点
- 由很多(实际上是无穷多个)位置点组成;
- 这些点之间存在相对的关系;
- 可以在空间中定义长度、角度;
- 这个空间可以容纳运动,即从一个点到另一个点的移动(变换)。
因此,我们可以把向量看成是空间中的一个点,而向量的变换就是这个点在空间中的运动。所以说,向量空间就是一个集合,这个集合对向量的加法和数乘是封闭的。这意味着,这个空间内的向量,只要按照加法和数乘的方式运动,就会一直在这个空间里。所以,对加法和数乘运算封闭的向量空间也称为线性空间。
1.2 向量的内积
对于两个 n n n维向量 a = [ a 1 , a 2 , … , a n ] T {\bf a}=[a_1,a_2,\ldots,a_n]^{\rm T} a=[a1,a2,…,an]T和 b = [ b 1 , b 2 , … , b n ] T {\bf b}=[b_1,b_2,\ldots,b_n]^{\rm T} b=[b1,b2,…,bn]T,我们定义其内积(也称点乘)为
a ⋅ b = ⟨ a , b ⟩ = a 1 b 1 + a 2 b 2 + … + a n b n = ∑ i = 1 n a i b i , (1) \tag{1} \begin{aligned} {\bf a}\cdot{\bf b}=\langle {\bf a} ,{\bf b}\rangle=a_1b_1+a_2b_2+\ldots+a_nb_n =\sum_{i=1}^{n}a_ib_i, \end{aligned} a⋅b=⟨a,b⟩=a1b1+a2b2+…+anbn=i=1∑naibi,(1)注意两个向量的内积为一个标量。
下面我们来看看向量内积的物理意义。定义向量 c = a − b \bf c=a-b c=a−b,则有
c 2 = ( a − b ) 2 = a 2 + b 2 − 2 a ⋅ b \begin{aligned} {\bf c}^2=({\bf a}-{\bf b})^2={\bf a}^2+{\bf b}^2-2{\bf a}\cdot{\bf b} \end{aligned} c2=(a−b)2=a2+b2−2a⋅b进一步,根据余弦定理,我们可以得到
c 2 = a 2 + b 2 − 2 ∣ a ∣ ∣ b ∣ cos θ , \begin{aligned} {\bf c}^2={\bf a}^2+{\bf b}^2-2|{\bf a}||{\bf b}|\cos \theta, \end{aligned} c2=a2+b2−2∣a∣∣b∣cosθ,故有 a ⋅ b = ∣ a ∣ ∣ b ∣ cos θ {\bf a}\cdot{\bf b}=|{\bf a}||{\bf b}|\cos \theta a⋅b=∣a∣∣b∣cosθ,这里 θ \theta θ为向量 a {\bf a} a和 b {\bf b} b的夹角。
图1为 n = 2 n=2 n=2时两个向量点乘的示意图,从图中我们不难看出,两个向量的内积 a ⋅ b {\bf a}\cdot{\bf b} a⋅b,可以看成向量 b {\bf b} b在向量 a {\bf a} a方向上的投影( a 0 = ∣ b ∣ cos θ a_0=|{\bf b}|\cos \theta a0=∣b∣cosθ),与向量 a \bf a a在 a \bf a a方向上的乘积。
1.3 向量的范数
向量 a \bf a a的范数记为 ∥ a ∥ \|{\bf a}\| ∥a∥,定义为
∥ a ∥ = ( a ⋅ a ) 1 2 = ∑ i = 1 n a i 2 . (2) \tag{2} \|{\bf a}\|=({\bf a \cdot a})^{\frac{1}{2}}=\sqrt{\sum_{i=1}^na_i^2}. ∥a∥=(a⋅a)21=i=1∑nai2.(2)不难看出,向量的范数为其长度。
1.4 标准正交向量组
若向量 a \bf a a与 b \bf b b的夹角 cos θ = 90 ° \cos \theta=90\degree cosθ=90°,显然有 a ⋅ b = 0 \bf a \cdot b=0 a⋅b=0,我们称向量 a \bf a a与 b \bf b b正交。进一步,若 ∣ a ∣ = ∣ b ∣ = 1 |\bf a|=|b|=1 ∣a∣=∣b∣=1,则称向量 a \bf a a与 b \bf b b标准正交,此时向量 a \bf a a和 b \bf b b正交且其范数(长度)均为单位1。
若有 N N N个 n n n维向量 e i {\bf e}_i ei, i = 1 , 2 , … , n i=1,2,\ldots,n i=1,2,…,n,满足
e i ⋅ e j = { 1 , j = k 0 , j ≠ k (3) \tag{3} {\bf e}_i\cdot {\bf e}_j=\left\{\begin{aligned} 1,\ j=k\\ 0,\ j\ne k \end{aligned}\right. ei⋅ej={1, j=k0, j=k(3)则称 { e i , i = 1 , 2 , … , N } \{ {\bf e}_i,\ i=1,2,\ldots,N\} {ei, i=1,2,…,N}为标准(归一化)正交向量组。
1.5 Gram-Schmidt正交化
下面我们讨论如何将一组 n n n维向量 { v i , i = 1 , 2 , … , m } \{{\bf v}_i,\ i=1,2,\ldots,m\} {vi, i=1,2,…,m},构造成标准正交向量。
- 第一步,从这组向量中任意选择一个向量,例如 v 1 \bf v_1 v1,对它的长度归一化,可以得到第一个向量,即
u 1 = v 1 ∥ v 1 ∥ {\bf u}_1=\frac{{\bf v}_1}{\|{\bf v}_1\|} u1=∥v1∥v1 - 第二步,选择 v 2 \bf v_2 v2,先减去 v 2 \bf v_2 v2在 u 1 \bf u_1 u1上的投影,剩下与 u 1 \bf u_1 u1正交的成分,得到
u 2 ′ = v 2 − ( v 2 ⋅ u 1 ) u 1 , {\bf u_2}'={\bf v}_2-({\bf v}_2\cdot {\bf u}_1){\bf u}_1, u2′=v2−(v2⋅u1)u1,注意这里 v 2 ⋅ u 1 {\bf v}_2\cdot {\bf u}_1 v2⋅u1是个标量,表示 v 2 \bf v_2 v2投影到 u 1 \bf u_1 u1上的长度, u 1 \bf u_1 u1是单位长度向量。进一步,我们将 u 2 ′ \bf u_2' u2′归一化,有
u 2 = u 2 ′ ∥ u 2 ′ ∥ . \bf u_2=\frac{u_2'}{\|u_2'\|}. u2=∥u2′∥u2′. - 第三步,继续上述过程,选择 v 3 \bf v_3 v3并减去其在 u 1 , u 2 \bf u_1,u_2 u1,u2上的投影,从而得到
u 3 ′ = v 3 − ( v 3 ⋅ u 1 ) u 1 − ( v 3 ⋅ u 2 ) u 2 , {\bf u_3}'={\bf v}_3-({\bf v}_3\cdot {\bf u}_1){\bf u}_1-({\bf v}_3\cdot {\bf u}_2){\bf u}_2, u3′=v3−(v3⋅u1)u1−(v3⋅u2)u2,以及
u 3 = u 3 ′ ∥ u 3 ′ ∥ . \bf u_3=\frac{u_3'}{\|u_3'\|}. u3=∥u3′∥u3′.将这个过程持续下去,就可以得到一组 n 1 n_1 n1个标准正交向量,一般来说 n 1 ≤ n n_1\le n n1≤n。
1.6 向量的正交表示
若有包含 N N N个向量的标准正交向量组 { e i , i = 1 , 2 , … , N } \{ {\bf e}_i,\ i=1,2,\ldots,N\} {ei, i=1,2,…,N}形成一个完备的坐标系统,则该系统中任一向量 v \bf v v等于它在 N N N个坐标轴上的分向量的几何和
v = ∑ i = 1 N v i e i , (4) \tag{4} {\bf v}=\sum_{i=1}^{N}v_i{\bf e}_i, v=i=1∑Nviei,(4)其中 v i = v ⋅ e i v_i={\bf v}\cdot {\bf e}_i vi=v⋅ei是 v \bf v v在单位向量 e i {\bf e}_i ei上的投影。
2、信号空间
下面我们把向量空间的概念推广到信号空间上,这样可以简化信号的处理与分析。
2.1 信号的能量
实确定能量信号 s ( t ) s(t) s(t)的能量为
E s = ∫ − ∞ ∞ s 2 ( t ) d t (5) \tag{5} E_s=\int_{-\infty}^{\infty}s^2(t)dt Es=∫−∞∞s2(t)dt(5)
2.2 信号的内积
我们定义实能量信号 s 1 ( t ) s_1(t) s1(t)和 s 2 ( t ) s_2(t) s2(t)的内积为
⟨ s 1 ( t ) , s 2 ( t ) ⟩ = ∫ − ∞ ∞ s 1 ( t ) s 2 ( t ) d t , (6) \tag{6} \langle s_1(t),s_2(t)\rangle=\int_{-\infty}^{\infty}s_1(t)s_2(t)dt, ⟨s1(t),s2(t)⟩=∫−∞∞s1(t)s2(t)dt,(6)如果它们的内积为零,我们则称它们为相互正交。
2.3 信号的范数
我们定义实能量信号 s ( t ) s(t) s(t)的范数为
∥ s ( t ) ∥ = ∫ − ∞ ∞ s 2 ( t ) d t = E s . (7) \tag{7} \|s(t)\|=\sqrt{\int_{-\infty}^{\infty}s^2(t)dt}=\sqrt{E_s}. ∥s(t)∥=∫−∞∞s2(t)dt=Es.(7)
2.4 信号的相关系数
为了表征两个信号间的相似性,我们定义实能量信号 s 1 ( t ) s_1(t) s1(t)和 s 2 ( t ) s_2(t) s2(t)的相关系数为
ρ 12 = ⟨ s 1 ( t ) , s 2 ( t ) ⟩ ∥ s 1 ( t ) ∥ ∥ s 2 ( t ) ∥ . (8) \tag{8} \rho_{12}=\frac{\langle s_1(t),s_2(t)\rangle}{\|s_1(t)\|\|s_2(t)\|}. ρ12=∥s1(t)∥∥s2(t)∥⟨s1(t),s2(t)⟩.(8)显然,信号与其自身相关系数最大,为1;若两个信号正交,则相关系数为0。
2.5 信号的正交展开
下面我们讨论信号波形的向量表示法。对于确定实能量信号 s ( t ) s(t) s(t),假定存在一个标准正交函数集 { f n ( t ) , n = 1 , 2 , … N } \{f_n(t),n=1,2,\ldots N\} {fn(t),n=1,2,…N},满足
∫ − ∞ ∞ f n ( t ) f m ( t ) d t = { 1 , m = n 0 , m ≠ n , (9) \tag{9} \int_{-\infty}^{\infty}f_n(t)f_m(t)dt=\left\{\begin{aligned} 1,\ m= n\\ 0,\ m\ne n \end{aligned}\right., ∫−∞∞fn(t)fm(t)dt={1, m=n0, m=n,(9)则可以用这 N N N个标准正交函数的线性组合来近似表示信号 s ( t ) s(t) s(t),即
s ^ ( t ) = ∑ n = 1 N s n f n ( t ) . (10) \tag{10} \hat s(t)=\sum_{n=1}^{N}s_nf_n(t). s^(t)=n=1∑Nsnfn(t).(10)因此,我们可以得到近似误差为
e ( t ) = s ( t ) − s ^ ( t ) , e(t)=s(t)-\hat s(t), e(t)=s(t)−s^(t),显然,近似误差的能量为
E e = ∫ − ∞ ∞ e 2 ( t ) d t = ∫ − ∞ ∞ [ s ( t ) − s ^ ( t ) ] 2 d t = ∫ − ∞ ∞ [ s ( t ) − ∑ n = 1 N s n f n ( t ) ] 2 d t . (11) \tag{11} E_e=\int_{-\infty}^{\infty}e^2(t)dt=\int_{-\infty}^{\infty}[s(t)-\hat s(t)]^2dt=\int_{-\infty}^{\infty}[s(t)-\sum_{n=1}^{N}s_nf_n(t)]^2dt. Ee=∫−∞∞e2(t)dt=∫−∞∞[s(t)−s^(t)]2dt=∫−∞∞[s(t)−n=1∑Nsnfn(t)]2dt.(11)下面我们以最小化近似误差能量为目标,优化 s ^ ( t ) \hat s(t) s^(t)近似的系数 s n , n = 1 , 2 , … , N s_n,n=1,2,\ldots,N sn,n=1,2,…,N,即
min s n E e = ∫ − ∞ ∞ [ s ( t ) − ∑ n = 1 N s n f n ( t ) ] 2 d t , n = 1 , 2 , … , N . (12) \tag{12} \min_{s_n}E_e=\int_{-\infty}^{\infty}[s(t)-\sum_{n=1}^{N}s_nf_n(t)]^2dt,\ n=1,2,\ldots,N. snminEe=∫−∞∞[s(t)−n=1∑Nsnfn(t)]2dt, n=1,2,…,N.(12)我们将 E e E_e Ee对 N N N个系数求偏导,并置导数为0,就可以求得最优系数。由此我们得到 N N N个等式
∂ E e ∂ s i = 0 , i = 1 , 2 , … , N (13) \tag{13} \frac{\partial E_e}{\partial s_i}=0,\ i=1,2,\ldots,N ∂si∂Ee=0, i=1,2,…,N(13)进一步,我们有
∂ E e ∂ s i = ∂ ∂ s i ∫ − ∞ ∞ s 2 ( t ) d t + ∂ ∂ s i ∫ − ∞ ∞ [ ∑ n = 1 N s n f n ( t ) ] 2 d t − 2 ∂ ∂ s i ∑ n = 1 N s n ∫ − ∞ ∞ s ( t ) f n ( t ) d t (14) \tag{14} \begin{aligned} &\frac{\partial E_e}{\partial s_i}\\ =&\frac{\partial}{\partial s_i}\int_{-\infty}^{\infty}s^2(t)dt+\frac{\partial}{\partial s_i} \int_{-\infty}^{\infty}[\sum_{n=1}^{N}s_nf_n(t)]^2dt-2\frac{\partial }{\partial s_i}\sum_{n=1}^{N}s_n\int_{-\infty}^{\infty}s(t)f_n(t)dt \end{aligned} =∂si∂Ee∂si∂∫−∞∞s2(t)dt+∂si∂∫−∞∞[n=1∑Nsnfn(t)]2dt−2∂si∂n=1∑Nsn∫−∞∞s(t)fn(t)dt(14)上式中的第一项显然为0,第二项为
∂ ∂ s i ∫ − ∞ ∞ [ ∑ n = 1 N s n f n ( t ) ] 2 d t = ∂ ∂ s i ∑ m = 1 N ∑ n = 1 N s m s n ∫ − ∞ ∞ f m ( t ) f n ( t ) d t = ∂ ∂ s i ∑ n = 1 N s n 2 ∫ − ∞ ∞ f n 2 ( t ) d t = ∂ ∂ s i ∑ n = 1 N s n 2 = 2 s i , (15) \tag{15} \begin{aligned} &\frac{\partial}{\partial s_i} \int_{-\infty}^{\infty}[\sum_{n=1}^{N}s_nf_n(t)]^2dt\\ =&\frac{\partial}{\partial s_i} \sum_{m=1}^{N}\sum_{n=1}^{N}s_ms_n\int_{-\infty}^{\infty}f_m(t)f_n(t)dt\\ =&\frac{\partial}{\partial s_i} \sum_{n=1}^{N}s_n^2\int_{-\infty}^{\infty}f^2_n(t)dt \\ =&\frac{\partial}{\partial s_i}{\sum_{n=1}^{N}s_n^2}=2s_i, \end{aligned} ===∂si∂∫−∞∞[n=1∑Nsnfn(t)]2dt∂si∂m=1∑Nn=1∑Nsmsn∫−∞∞fm(t)fn(t)dt∂si∂n=1∑Nsn2∫−∞∞fn2(t)dt∂si∂n=1∑Nsn2=2si,(15)而第三项为
− 2 ∂ ∂ s i ∑ n = 1 N s n ∫ − ∞ ∞ s ( t ) f n ( t ) d t = − 2 s i ∫ − ∞ ∞ s ( t ) f i ( t ) d t . (15) \tag{15} -2\frac{\partial }{\partial s_i}\sum_{n=1}^{N}s_n\int_{-\infty}^{\infty}s(t)f_n(t)dt=-2s_i\int_{-\infty}^{\infty}s(t)f_i(t)dt. −2∂si∂n=1∑Nsn∫−∞∞s(t)fn(t)dt=−2si∫−∞∞s(t)fi(t)dt.(15)将(14)、(15)带入(13),可以得到近似误差能量最小时的最优系数为
s n , o p t = ∫ − ∞ ∞ s ( t ) f n ( t ) d t , i = 1 , 2 , … , N . (16) \tag{16} s_{n,\rm opt}=\int_{-\infty}^{\infty}s(t)f_n(t)dt,\ i=1,2,\ldots,N. sn,opt=∫−∞∞s(t)fn(t)dt, i=1,2,…,N.(16)这意味着,将 s ( t ) s(t) s(t)投影到 f n ( t ) f_n(t) fn(t),就可以得到最优系数 s n s_n sn,因此 s ^ ( t ) \hat s(t) s^(t)是函数 s ( t ) s(t) s(t)投影到 { f n ( t ) , n = 1 , 2 , … , N } \{f_n(t),n=1,2,\ldots,N\} {fn(t),n=1,2,…,N}张成的 N N N维信号空间上的投影,此时的近似误差能量为
E e , min = ∫ − ∞ ∞ s 2 ( t ) d t + ∑ n = 1 N s n , o p t 2 − 2 ∑ n = 1 N s n , o p t ∫ − ∞ ∞ s ( t ) f n ( t ) d t = E s 2 − ∑ n = 1 N s n , o p t 2 (17) \tag{17} \begin{aligned} E_{e,\min}&=\int_{-\infty}^{\infty}s^2(t)dt+\sum_{n=1}^{N}s_{n,\rm opt}^2-2\sum_{n=1}^{N}s_{n, \rm opt}\int_{-\infty}^{\infty}s(t)f_n(t)dt\\ &=E_s^2-\sum_{n=1}^{N}s_{n,\rm opt}^2 \end{aligned} Ee,min=∫−∞∞s2(t)dt+n=1∑Nsn,opt2−2n=1∑Nsn,opt∫−∞∞s(t)fn(t)dt=Es2−n=1∑Nsn,opt2(17)当近似误差能量 E e , min = 0 E_{e,\min}=0 Ee,min=0时,我们有
E s 2 = ∑ n = 1 N s n , o p t 2 . (18) \tag{18} \begin{aligned} E_s^2=\sum_{n=1}^{N}s_{n,\rm opt}^2. \end{aligned} Es2=n=1∑Nsn,opt2.(18)这意味着,当 E e , min = 0 E_{e,\min}=0 Ee,min=0时,
s ( t ) = s ^ ( t ) = ∑ n = 1 N s n f n ( t ) (19) \tag{19} s(t)=\hat s(t)=\sum_{n=1}^{N}s_nf_n(t) s(t)=s^(t)=n=1∑Nsnfn(t)(19)成立。若能量信号可以用(19)表示且 E e , min = 0 E_{e,\min}=0 Ee,min=0,我们称标准正交函数集 { f n ( t ) , n = 1 , 2 , … , N } \{f_n(t),\ n=1,2,\ldots, N\} {fn(t), n=1,2,…,N}是完备的。
【小结】若标准正交函数集 { f n ( t ) , n = 1 , 2 , … , N } \{f_n(t),\ n=1,2,\ldots, N\} {fn(t), n=1,2,…,N}是完备的,能量信号 s ( t ) s(t) s(t)可以表示为
s ( t ) = ∑ n = 1 N s n f n ( t ) , s(t)=\sum_{n=1}^{N}s_nf_n(t), s(t)=n=1∑Nsnfn(t),其中, s n = ∫ − ∞ ∞ s ( t ) f n ( t ) s_n=\int_{-\infty}^{\infty}s(t)f_n(t) sn=∫−∞∞s(t)fn(t)为 s ( t ) s(t) s(t)在 f n ( t ) f_n(t) fn(t)上的投影。
2.6 信号的向量表示
根据上面的讨论,如果对于信号 s ( t ) s(t) s(t),有完备的标准正交函数集 { f n ( t ) , n = 1 , 2 , … , N } \{f_n(t),\ n=1,2,\ldots, N\} {fn(t), n=1,2,…,N},则可以用 { f n ( t ) , n = 1 , 2 , … , N } \{f_n(t),\ n=1,2,\ldots, N\} {fn(t), n=1,2,…,N} 来张成 N N N维信号空间。将信号 s ( t ) s(t) s(t)映射到函数 f n ( t ) f_n(t) fn(t)上,可以得到 s n = ∫ − ∞ ∞ s ( t ) f n ( t ) s_n=\int_{-\infty}^{\infty}s(t)f_n(t) sn=∫−∞∞s(t)fn(t),因此得到信号 s ( t ) s(t) s(t)的向量表示为
s = [ s 1 , s 2 , ⋯ , s N ] . {\bf s}=[s_1,s_2,\cdots,s_N]. s=[s1,s2,⋯,sN].这样信号间的运算,就可以变为向量间的运算。如(5)~(8),均可以用向量形式表示如下:
- 信号内积
⟨ s 1 ( t ) , s 2 ( t ) ⟩ = ⟨ s 1 , s 2 ⟩ = ∑ n = 1 N s 1 , n s 2 , n \langle s_1(t), s_2(t)\rangle=\langle {\bf s}_1, {\bf s}_2\rangle=\sum_{n=1}^{N}s_{1,n}s_{2,n} ⟨s1(t),s2(t)⟩=⟨s1,s2⟩=n=1∑Ns1,ns2,n - 信号能量
E s = ⟨ s , s ⟩ = ∑ n = 1 N s n 2 = ∣ s ∣ 2 E_s=\langle {\bf s}, {\bf s}\rangle=\sum_{n=1}^{N}s_n^2=|{\bf s}|^2 Es=⟨s,s⟩=n=1∑Nsn2=∣s∣2 - 信号范数
∥ s ( t ) ∥ = E s = ∑ n = 1 N s n 2 = ∣ s ∣ (7) \tag{7} \|s(t)\|=\sqrt{E_s}=\sqrt{\sum_{n=1}^{N}s_n^2}=|{\bf s}| ∥s(t)∥=Es=n=1∑Nsn2=∣s∣(7) - 相关系数
ρ 12 = ⟨ s 1 , s 2 ⟩ E s 1 E s 2 = ⟨ s 1 , s 2 ⟩ ∣ s 1 ∣ ∣ s 2 ∣ \rho_{12}=\frac{\langle {\bf s}_1,{\bf s}_2\rangle}{\sqrt{E_{s1}E_{s2}}}=\frac{\langle {\bf s}_1,{\bf s}_2\rangle}{|{\bf s}_1||{\bf s}_2|} ρ12=Es1Es2⟨s1,s2⟩=∣s1∣∣s2∣⟨s1,s2⟩
进一步,我们定义两个实能量信号 s 1 ( t ) s_1(t) s1(t)和 s 2 ( t ) s_2(t) s2(t)之间的欧式距离为
d 12 = ∫ − ∞ ∞ [ s 1 ( t ) − s 2 ( t ) ] 2 d t = E s 1 + E s 2 − 2 E s 1 E s 2 ρ 12 (8) \tag{8} d_{12}=\sqrt{\int_{-\infty}^{\infty}[s_1(t)-s_2(t)]^2dt}=\sqrt{E_{s1}+E_{s2}-2\sqrt{E_{s1}E_{s2}}\rho_{12}} d12=∫−∞∞[s1(t)−s2(t)]2dt=Es1+Es2−2Es1Es2ρ12(8)也就是信号空间中两个向量 s 1 {\bf s}_1 s1与 s 2 {\bf s}_2 s2间的距离,即
d 12 = ∣ s 1 − s 2 ∣ . d_{12}=|{\bf s}_1-{\bf s}_2|. d12=∣s1−s2∣.若 E s 1 = E s 2 = E s E_{s1}=E_{s2}=E_s Es1=Es2=Es,则有
d 12 = 2 E s ( 1 − ρ 12 ) . d_{12}=\sqrt{2E_s(1-\rho_{12})}. d12=2Es(1−ρ12).
这篇关于现代通信原理14.1:正交向量空间与正交信号空间的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!