NASA和IBM联合开发的 2022 年多时相土地分类数据集

2024-03-12 19:28

本文主要是介绍NASA和IBM联合开发的 2022 年多时相土地分类数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

美国国家航空航天局(NASA)和国际商业机器公司(IBM)合作,利用大规模卫星和遥感数据,包括大地遥感卫星和哨兵-2 号(HLS)数据,创建了地球观测人工智能基础模型。通过奉行开放式人工智能和开放式科学的原则,两家机构都在积极为促进知识共享和加快创新以应对重大环境挑战的全球使命做出贡献。通过Hugging Face的平台,他们简化了地理空间模型的训练和部署,使开放科学用户、初创企业和企业能够在watsonx等多云人工智能平台上使用这些模型。此外,Hugging Face 还能在社区内轻松共享模型系列(我们的团队称之为 Prithvi)的管道,促进全球合作和参与。有关 Prithvi 的更多详情,请参阅 IBM NASA 联合技术论文。

多时作物分类数据集

数据集摘要

本数据集包含 2022 年美国毗连地区不同土地覆被和作物类型类别的统一陆地卫星-圣天诺时空影像。目标标签来自美国农业部的作物数据层(CDL)。它的主要用途是训练分割地理空间机器学习模型。

数据集结构

TIFF 文件
每个 TIFF 文件覆盖 224 x 224 像素区域,空间分辨率为 30 米。每个输入卫星文件包含 18 个波段,其中包括三个时间步长叠加在一起的 6 个光谱波段。每个掩膜的 GeoTIFF 文件包含一个波段,每个像素包含目标类别。

Band Order

在每个输入的 GeoTIFF 中,以下波段在整个生长季节的三次观测中重复三次: 通道、名称、HLS S30 波段编号
1, Blue, B02
2, Green, B03
3, Red, B04
4, NIR, B8A
5, SW 1, B11
6, SW 2, B12

Masks are a single band with values:
0 : "No Data" 1 : "Natural Vegetation" 2 : "Forest" 3 : "Corn" 4 : "Soybeans" 5 : "Wetlands" 6 : "Developed/Barren" 7 : "Open Water" 8 : "Winter Wheat" 9 : "Alfalfa" 10 : "Fallow/Idle Cropland" 11 : "Cotton" 12 : "Sorghum" 13 : "Other"

训练数据

 

验证数据

数据分割

3 854 个瓦片被随机分成训练数据(80%)和验证数据(20%),相应的 ID 记录在 cvs 文件 train_data.txt 和 validation_data.txt 中。

数据集创建

查询和场景选择

首先,根据美国农业部 CDL 的样本定义了一组 5,000 个瓦片,以确保在整个美国有代表性。然后,对每个片段查询 2022 年 3 月至 9 月期间相应的 HLS S30 场景,并检索云量较少的场景。然后,在低云层场景中选择三个场景,以确保在季节早期、中期和末期各有一个场景。然后,使用双线性插值法将最终的三个场景重新投影到 CDL 的投影网格(EPSG:5070)上。


最后一步,将每个瓦片的三个场景剪切到瓦片的边界框内,并将 18 个光谱带堆叠在一起。此外,使用 HLS 数据集的 Fmask 层对每个瓦片进行质量控制。任何含有云层、云影、邻近云层或缺失值的芯片都会被丢弃。这样就得到了 3854 个瓦片。

数据集下载

您可以从该资源库下载 .tgz 格式的数据(需要安装Git Large File Sotrage)。相同版本的数据作为 AWS S3 上的对象托管在 Source Cooperative 上。

数据引用

@misc{hls-multi-temporal-crop-classification,author = {Cecil, Michael and Kordi, Fatemehand Li, Hanxi (Steve) and Khallaghi, Sam and Alemohammad, Hamed},doi    = {10.57967/hf/0955},month  = aug,title  = {{HLS Multi Temporal Crop Classification}},url    = {https://huggingface.co/ibm-nasa-geospatial/multi-temporal-crop-classification},year   = {2023}
}

 

网址推荐 

推荐两个网址一个是机器学习的另外一个是0代码地图应用创建

 Mapmost login

 前言 – 人工智能教程

这篇关于NASA和IBM联合开发的 2022 年多时相土地分类数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/802331

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

Mybatis拦截器如何实现数据权限过滤

《Mybatis拦截器如何实现数据权限过滤》本文介绍了MyBatis拦截器的使用,通过实现Interceptor接口对SQL进行处理,实现数据权限过滤功能,通过在本地线程变量中存储数据权限相关信息,并... 目录背景基础知识MyBATis 拦截器介绍代码实战总结背景现在的项目负责人去年年底离职,导致前期规

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

SpringBoot整合Canal+RabbitMQ监听数据变更详解

《SpringBoot整合Canal+RabbitMQ监听数据变更详解》在现代分布式系统中,实时获取数据库的变更信息是一个常见的需求,本文将介绍SpringBoot如何通过整合Canal和Rabbit... 目录需求步骤环境搭建整合SpringBoot与Canal实现客户端Canal整合RabbitMQSp

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核