华为云数据湖探索(DLI)介绍、安装、hello world、Location匹配

2024-03-12 19:20

本文主要是介绍华为云数据湖探索(DLI)介绍、安装、hello world、Location匹配,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Spark与Elasticsearch(es)的结合,是近年来大数据解决方案很火热的一个话题。一个是出色的分布式计算引擎,另一个是出色的搜索引擎。近年来,越来越多的成熟方案落地到行业产品中,包括我们耳熟能详的Spark+ES+HBase日志分析平台。

目前,华为云数据湖探索(DLI)服务已全面支持Spark/Flink跨源访问Elasticsearch。而之前在实现过程中也遇到过很多场景化问题,本文将挑选其中比较经典的分布式一致性问题进行探讨。

分布式一致性问题

问题描述

数据容错是大数据计算引擎面临的主要问题之一。目前,主流的开源大数据比如Apache Spark和Apache Flink已经完全实现了Exactly Once语义,保证了内部数据处理的正确性。但是在将计算结果写入到外部数据源时,因为外部数据源架构与访问方式的多样性,始终没能找到一个统一的解决方案来保证一致性(我们称为Sink算子一致性问题)。再加上es本身没有事务处理的能力,因此如何保证写入es数据一致性成为了热点话题。

我们举一个简单的例子来说明一下,图1在SparkRDD中(这里假设是一个task),每一条蓝色的线代表100万条数据,那么10条蓝色的线表示了有1000万条数据准备写入到CSS(华为云搜索服务,内部为es)的某个index中。在写入过程中,系统发生了故障,导致只有一半(500万条)数据成功写入。

task是Spark执行任务的最小单元,如果task失败了,当前task需要整个重新执行。所以,当我们重新执行写入操作(图2),并最终重试成功之后(这次用红色来表示相同的1000万条数据),上一次失败留下的500万条数据依然存在(蓝色的线),变成脏数据。脏数据对数据计算的正确性带来了很严重的影响。因此,我们需要探索一种方法,能够实现Spark写入es数据的可靠性与正确性。

图1 Spark task失败时向es写入了部分数据

图2 task重试成功后上一次写入的部分数据成为脏数据

解决方案

1.写覆盖

从上图中,我们可以很直观的看出来,每次task插入数据前,先将es的index中的数据都清空就可以了。那么,每次写入操作可以看成是以下3个步骤的组合:

  • 步骤一 判断当前index中

这篇关于华为云数据湖探索(DLI)介绍、安装、hello world、Location匹配的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/802307

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

CentOS7安装配置mysql5.7 tar免安装版

一、CentOS7.4系统自带mariadb # 查看系统自带的Mariadb[root@localhost~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64# 卸载系统自带的Mariadb[root@localhost ~]# rpm -e --nodeps mariadb-libs-5.5.44-2.el7

Centos7安装Mongodb4

1、下载源码包 curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-4.2.1.tgz 2、解压 放到 /usr/local/ 目录下 tar -zxvf mongodb-linux-x86_64-rhel70-4.2.1.tgzmv mongodb-linux-x86_64-rhel70-4.2.1/

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo