数据库管理-第159期 Oracle Vector DB AI-10(20240311)

2024-03-12 13:28

本文主要是介绍数据库管理-第159期 Oracle Vector DB AI-10(20240311),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据库管理159期 2024-03-11

  • 数据库管理-第159期 Oracle Vector DB & AI-10(20240311)
    • 1 其他distance函数
    • 2 实例演示
      • 使用其他函数寻找最近向量点
      • 函数变体
      • 简写语法
    • 总结

数据库管理-第159期 Oracle Vector DB & AI-10(20240311)

作者:胖头鱼的鱼缸(尹海文)
Oracle ACE Associate: Database(Oracle与MySQL)
国内某科技公司 DBA总监
10年数据库行业经验,现主要从事数据库服务工作
拥有OCM 11g/12c/19c、MySQL 8.0 OCP、Exadata、CDP等认证
墨天轮MVP、认证技术专家、年度墨力之星,ITPUB认证专家,OCM讲师
圈内拥有“总监”、“保安”、“国产数据库最大敌人”等称号,非著名社恐(社交恐怖分子)
公众号:胖头鱼的鱼缸;CSDN:胖头鱼的鱼缸(尹海文);墨天轮:胖头鱼的鱼缸;ITPUB:yhw1809。
除授权转载并标明出处外,均为“非法”抄袭。

写了些其他的东西,又休息了几天,今天继续。
在前面我演示了vector_distance()的默认算法方式,即Euclidean Squared(欧几里得平方)。本期我将演示其他的distance函数。

1 其他distance函数

在Oracle AI Vector Search中还有其他几种类型的distance函数:

  • Cosine Similarity(余弦相似度)
  • Dot Product(点积)
  • Manhattan Distance(曼哈顿距离)
  • Hamming Distance(汉明距离)

在vector_distance()函数中,默认为EUCLIDEAN,指定其他distance函数则使用一下方法:

  • vector_distance(v1, v2, EUCLIDEAN);
  • vector_distance(v1, v2, COSINE);
  • vector_distance(v1, v2, DOT);
  • vector_distance(v1, v2, MANHATTAN);
  • vector_distance(v1, v2, HAMMING);

2 实例演示

本节内容仍使用上一期的VT2表,使用向量点(16,4)进行演示,不同的函数结果略有不同:

使用其他函数寻找最近向量点

Cosine Similarity
我们不关心实际距离,而是关心距离最小的行的ID

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector_distance( vector('[16, 4]'), v, COSINE)
FETCH FIRST 4 ROWS ONLY;

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Euclidean Similarity
我们不关心实际距离,而是关心距离最小的行的ID

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector_distance( vector('[16, 4]'), v, EUCLIDEAN)
FETCH FIRST 4 ROWS ONLY;

image.png

Dot Product
我们不关心实际距离,而是关心距离最小的行的ID

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector_distance(vector('[16, 4]'), v, DOT)
FETCH FIRST 4 ROWS ONLY;

image.png

Manhattan
我们不关心实际距离,而是关心距离最小的行的ID

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector_distance(vector('[16, 4]'), v, MANHATTAN)
FETCH FIRST 4 ROWS ONLY;

image.png

Hamming
我们不关心实际距离,而是关心距离最小的行的ID。还要注意的是,搜索的结果与我们之前使用其他函数看到的结果不同

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector_distance( vector('[16, 4]'), v, HAMMING)
FETCH FIRST 4 ROWS ONLY;

image.png

函数变体

distance函数还有一些其他的变体写法:

  • L1_DISTANCE(v1, v2) = MANHATTAN distance
  • L2_DISTANCE(v1, v2) = EUCLIDEAN distance
  • COSINE_DISTANCE(v1, v2) = COSINE similarity
  • INNER_PRODUCT(v1, v2) = DOT product

L1_DISTANCE
我们不关心实际距离,而是关心距离最小的行的ID

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY L1_DISTANCE(vector('[16, 4]'), v)
FETCH FIRST 4 ROWS ONLY;

image.png

L2_DISTANCE
我们不关心实际距离,而是关心距离最小的行的ID

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY L2_DISTANCE(vector('[16, 4]'), v)
FETCH FIRST 4 ROWS ONLY;

image.png

COSINE_DISTANCE

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY COSINE_DISTANCE( vector('[16, 4]'), v)
FETCH FIRST 4 ROWS ONLY;

image.png

INNER_PRODUCT

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY INNER_PRODUCT(vector('[16, 4]'), v)
FETCH FIRST 4 ROWS ONLY;

image.png

简写语法

distance函数还有一些简写写法:

  • v1 <-> v2 = Euclidean distance
  • v1 <=> v2 = Cosine similarity
  • v1 <#> v2 = Negative dot product

v1 <-> v2

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector('[16, 4]') <-> v
FETCH FIRST 4 ROWS ONLY;

image.png

**v1 <=> v2 **

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector('[16, 4]') <=> v 
FETCH FIRST 4 ROWS ONLY;

image.png

v1 <#> v2

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector('[16, 4]') <#> v 
FETCH FIRST 4 ROWS ONLY;

image.png

总结

本期针对不同写法的不同distance函数。
本系列内容预计还有2-4篇,分别为其他vector函数,一个相对复杂的demo演示以及与PGVector的对比。
老规矩,知道写了些啥。

这篇关于数据库管理-第159期 Oracle Vector DB AI-10(20240311)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/801398

相关文章

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

mysql外键创建不成功/失效如何处理

《mysql外键创建不成功/失效如何处理》文章介绍了在MySQL5.5.40版本中,创建带有外键约束的`stu`和`grade`表时遇到的问题,发现`grade`表的`id`字段没有随着`studen... 当前mysql版本:SELECT VERSION();结果为:5.5.40。在复习mysql外键约

SQL注入漏洞扫描之sqlmap详解

《SQL注入漏洞扫描之sqlmap详解》SQLMap是一款自动执行SQL注入的审计工具,支持多种SQL注入技术,包括布尔型盲注、时间型盲注、报错型注入、联合查询注入和堆叠查询注入... 目录what支持类型how---less-1为例1.检测网站是否存在sql注入漏洞的注入点2.列举可用数据库3.列举数据库

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

数据库oracle用户密码过期查询及解决方案

《数据库oracle用户密码过期查询及解决方案》:本文主要介绍如何处理ORACLE数据库用户密码过期和修改密码期限的问题,包括创建用户、赋予权限、修改密码、解锁用户和设置密码期限,文中通过代码介绍... 目录前言一、创建用户、赋予权限、修改密码、解锁用户和设置期限二、查询用户密码期限和过期后的修改1.查询用

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon