Python案例代码 | 使用正则表达式判别微博用户mbti类型

本文主要是介绍Python案例代码 | 使用正则表达式判别微博用户mbti类型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用Python爬虫采集 「微博搜索」中含mbti信息的推文, 使用正则表达式判别用户mbti类型。相比实验室做实验或者发调查问卷,这种方式收集到的用户类别是非常自然且真实的。今日爬虫不是今日主题,就不做分享了。

import pandas as pd#采集自微博搜索中含mbti类型的推文
df = pd.read_csv('mbti_test.csv')
#剔除content列中的nan数据
df.dropna(inplace=True, subset=['content'])
df

正则表达式练习题

  1. 提取含有mbti的记录

  2. 提取出含mbti类型出现的前后5个字符的文本 (前5个字符,后5个字符, 含mbti本身, 窗体最长的长度是14)

  3. 识别出含mbti的记录中对应的mbti类型, 未识别的标记为"未识别"

一、 提取含有mbti的记录

实现方法有两种

  1. pd.Series.str.contains(regex_pattern)

  2. 定义一个正则处理函数regex_func, 使用 pd.Series.apply(regex_func)

正则表达式含义

mbtis = '[infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj]'
  • [ 和 ]:这是字符类(character class)的起始和结束标记,表示要匹配方括号内的任何字符。

  • infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj:这是一个字符类内的字符集合,用于匹配MBTI类型词汇。每个MBTI类型词汇都以竖线 | 分隔,表示“或”的关系。这意味着正则表达式会匹配其中任何一个MBTI类型词汇。

  • +:这是一个量词,表示匹配前面的字符集合(MBTI类型词汇)一次或多次。它使正则表达式可以匹配包含一个或多个MBTI类型词汇的文本。

mbtis = '[infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj]'df.content.str.contains(mbtis)

0 True
1 True
2 True
3 True
4 True

495 False
496 False
497 False
498 False
499 False
Name: content, Length: 497, dtype: bool

import redef has_mbti(text):mbtis = '[infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj]+'if re.findall(mbtis, text):return Trueelse:return Falsedf.content.apply(has_mbti)

0 True
1 True
2 True
3 True
4 True

495 False
496 False
497 True
498 False
499 True
Name: content, Length: 497, dtype: bool

df['hasMBTI'] = df['content'].apply(has_mbti)
df

二、mbti前后内容

提取出含mbti类型出现的前后5个字符的文本(前5个字符,后5个字符, 含mbti本身, 窗体最长的长度是14)。

这样后续的分析任务,就可以通过查看mbti字眼前后出现的字符,来更新正则表达式。

正则表达式含义

mbti_win = "(.{0,5}(?:infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj).{0,5})"
  • ()这些括号用于将整个匹配结果捕获为一个分组

  • .{0,5} :这是一个量词,表示匹配前面的字符(.表示匹配任意字符)零次到五次。这部分用于匹配前面的文本,确保最多匹配前面的五个字符。

  • (?:infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj):这是一个非捕获分组,用于将多个MBTI类型词汇用 | 连接起来,表示匹配其中任何一个。

  • .{0,5} :这部分同样是一个量词,表示匹配后面的字符,确保最多匹配后面的五个字符。

def mbti_window(text):#识别mbti的正则表达式 mbti_win = "(.{0,5}(?:infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj).{0,5})"try:return re.findall(mbti_win, text)[0]except:return "未识别"df['MBTI_win'] = df['content'].apply(mbti_window)
df

三、识别mbti类型

刚刚的代码比较粗糙,只能判断文本中是否有mbti信息,但并不能判断该用户是否为某种mbti类型。

微博文本中,只有 //@ 前字符内容是微博用户所写内容。为了识别用户的mbti类型,可以先将我们看到的表达方式列举一下

  • ``我是[mbti]

  • 自己是[mbti]

  • 从[mbti]变为[mbti]

  • 一直是[mbti]

  • [mbti]我

  • 本[mbti]

可以基于此设计一个严格的正则表达式,能识别到的记录,肯定能判断该用户的mbti类型。未识别到的标记为 “未识别”

正则表达式含义

mbti_regex = "[我|自己|变成|一直|是|本]*(infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj)[我|俺|本|自己]*"   
  • [我|自己|变成|一直|是|本]*:这部分是一个字符集合,用于匹配前面的字符(关键词)。方括号 [...] 表示字符类,其中的字符是可选的,并且 * 表示匹配零次或多次。这意味着它可以匹配零个或多个出现在方括号中的字符,例如可以匹配"我"、“自己”、“变成”、“一直”、“是”、"本"等这些关键词。

  • (infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj) :这是一个分组,其中包含了MBTI类型词汇,用竖线 | 分隔,表示"或"的关系。这部分用于匹配任意一个MBTI类型词汇。

  • [我|俺|本|自己]* :这部分与第1部分类似,是一个字符集合,用于匹配后面的字符(关键词)。同样,方括号 [...] 表示字符类,其中的字符是可选的,并且 * 表示匹配零次或多次。

def identify_mbti(text):if '//@' in text:new_text = text.split('//@')[0]else:new_text = text#识别mbti的正则表达式 mbti_regex = "[我|自己|变成|一直|是|本]*(infj|entp|intp|intj|entj|enfj|infp|enfp|isfp|istp|isfj|istj|estp|esfp|estj|esfj)[我|俺|本|自己]*"try:return re.findall(mbti_regex, text)[0]except:return "未识别"#mbti类型
df['MBTI_Cat'] = df['content'].apply(identify_mbti)
df

#各类型记录数   
df['MBTI_Cat'].value_counts()   

MBTI_Cat
未识别 297
infp 35
isfj 20
enfp 18
intp 17
isfp 16
intj 14
entp 12
entj 11
infj 11
enfj 8
estj 8
istp 8
istj 7
esfp 6
estp 5
esfj 4
Name: count, dtype: int64

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述
若有侵权,请联系删除

这篇关于Python案例代码 | 使用正则表达式判别微博用户mbti类型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/800562

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来