伏羲—阿里云分布式调度系统

2024-03-12 02:59

本文主要是介绍伏羲—阿里云分布式调度系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天,大数据已经从概念发展到在很多行业落地生根。广泛用在电商、金融、企业等行业,帮助行业分析数据、挖掘数据的价值。即使在传统的医疗、安全、交通等领域也越来越多的应用大数据的技术。数据、价值二者之间的联系是计算,计算是大数据中最核心的部分。大数据计算就是将原来一台台的服务器通过网络连接起来成为一个整体,对外提供体验一致的计算功能,即分布式计算。

点击查看回顾视频

伏羲系统架构

分布式调度系统需要解决两个问题:

任务调度:如何将海量数据分片,并在几千上万台机器上并行处理,最终汇聚成用户需要的结果?当并行任务中个别失败了如何处理?不同任务之间的数据如何传递?

资源调度:分布式计算天生就是面向多用户、多任务的,如何让多个用户能够共享集群资源?如何在多个任务之间调配资源以使得每个任务公平的得到资源?

业界几种调度系统的比较

Hadoop MR

由一个JobTracker和若干个TaskTracker组成,client可以提交多个任务执行。其特点和存在问题如下图所示:

72c3caff0beecd056da98f62308afa445d9800af

YARN

其特点和存在问题如下图所示:

39689fd4151f12f24b2089301407f4f76efbd88b

Mesos

该系统与YARN类似,其特点和存在问题如下图所示:

aa0bdde2926b192d559fe835fd22dc6ea400b56e

伏羲系统架构

当飞天集群部署完毕后,主控为Fuxi Master,Package Manager为代码包。Fuxi Master和Tubo之间彼此有心跳通信,当用户通过Fuxi Master向系统提交任务时,Fuxi Master会通过调度选择一台Tubo启动App Master。App Master启动后会联系Fuxi Master将其需求发送给Fuxi Master触发调度,Fuxi Master经过资源调度并将结果返回给App Master,App Master与先相关资源上的Tubo联系,启动App Worker。App Worker也会上报到App Master准备开始执行任务。App Master将分片后的任务发送给App Worker开始执行,每个分片称为Instance。App Master和App Worker一起称之为计算框架。伏羲系统是多任务系统,可以同时运行多个计算框架。

87e2959408ea449e09bfc1c3b875bb47fcc212b7

伏羲架构也是资源调度和任务调度分离,两层架构。其优势在于:

规模:易于横向扩展,资源管理和调度模块仅负责资源的整体分配,不负责具体任务调度,可以轻松扩展集群节点规模;

容错:某个任务运行失败不会影响其他任务的执行;同时资源调度失败也不影响任务调度;

扩展性:不同的任务可以采用不同的参数配置和调度策略,支持资源抢占;

效率:计算framework决定资源的生命周期,可以复用资源,提高资源交互效率。

App Master和App Worker解决了任务调度,Fuxi Master和Tubo解决了资源调度。总体来说,伏羲架构:两层架构设计,分解问题;FuxiMaster扩展性强;支持多种计算框架,包括离线批处理、在线服务、实时计算、Streaming;容错性好,任意角色的故障不影响任务执行,支持多角色failover。

任务调度

海量数据如何并行处理?PC时代的多线程、多进程解决不了问题的时候,MapReduce通过化整为零、数据切片、分解、聚合解决了上述问题。传统的MapReduce模型是Map任务紧接着Reduce任务,模式相对固定。但是实际过程中问题的处理涉及多个步骤,难以用一个MapReduce模型描述。伏羲将MapReduce扩展到更广阔的DAG有向无环图。伏羲任务调度过程如下图所示:

b812e50e7ae86567a409515c5addec30ef886b86

App Master 的主要任务如上图所示。App Worker的任务是:接收App Master发来的Instance,并执行用户计算逻辑;向App Master报告执行进度等运行状态;读取输入数据、将计算结果写到输出文件。

数据Locality

App Worker处理数据时,尽量从本地磁盘读取,输出也尽量写本地磁盘,避免远程读写。这样就对调度的要求,尽量让Instance(数据分片)数据最多的节点上的App Worker来处理该Instance。

数据Shuffle

Map和Reduce之间数据的传递取决于实际问题的逻辑,可能存在3种形式(1:1,1:N,M:N)。伏羲将数据shuffle过程封装成streamline lib,用户不用关心shuffle细节。

Instance PVC重试

在任务运行期间,App Master会监控Instance的运行进度,如果失败,会将Instance调度分配到其他App Worker上重新运行。造成Instance进程失败的原因有:进程重启、机器故障等。重跑是最直接最常见的容错方式,但是还存在数据读取失败,比如磁盘故障、文件丢失,伏羲采用PVC(pipe version controle)进行重试。

Backup instance

App Master还会监控Instance的运行速度,如果运行慢,容易造成长尾,App Master会在另外的App Worker上同时运行该Instance,取最先结束的那一份。判断依据是:运行时间超过其他Instance的平均运行时间;数据处理速度低于其他Instance平均值;已完成的Instance比例。

资源调度

资源调度解决的问题是如何将集群的CPU、Memory资源在多个任务之间调度?目标是:集群资源利用率最大化;每个任务的资源等待时间最小化;能分组控制资源配额;能支持临时紧急任务。其操作是当有空闲资源时,从等待队列中选取一个任务进行调度。

伏羲的资源调度方法如下图所示:

983e1899c429b5d9ebe32d2caadef93b6282ad69

优先级和抢占策略

每个job在提交时会带一个priority值,一个整数值,越小优先级越高(可以理解为排队在前面)。相同优先级按提交时间,先提交的优先级高。FuxiMaster在调度时,资源优先分配给高优先级的job,剩余的资源继续分配给次高优先级job。如果临时有高优先级的紧急任务加入,FuxiMaster会从当前正在运行的任务中,从最低优先级任务开始强制收回资源,以分配给紧急任务,此过程称为“抢占”。抢占递归进行,直到被抢任务优先级不高于紧急任务(换句话,不能抢比自己优先级高的任务)。

公平调度策略

当有资源时,Fuxi Master依次轮询的将部分资源分配给各个job,并按优先级分组,同一优先级组内平均分配,有剩余资源再去下一优先级组分配。

配额策略

多个任务组成一个group,通常按不同业务区分。集群管理员设定每个group资源上限,称为Quota。每个group的job所分配的资源总和不会超过该group的Quota。某个group没用完的Quota可以共享给其他group(按Quota比例)。

容错机制

在分布式集群中,故障是常态,所以分布式调度中需要容错机制。好的容错机制要求:正在运行的任务不受影响,对用户透明,自动故障恢复,高可用。

任务调度failover

App Master进程重启后如何进行恢复?App Master具有Snapshot机制,将Instance的运行进度保存下来,当App Master重启后加载snapshot后继续运行instance。App Master进程failover,当App Master重启后,从App Worker汇报的状态中重建出之前的调度结果,继续运行Instance。

资源调度failover

Fuxi Master进程重启后恢复状态需要两种信息来源:Hard State,包括application的配置信息,来自snapshot;Soft State,来自各个Tubo和App Master的新消息中恢复,包括机器列表、每个App Master的资源请求、资源调度结果等。

81fcd4892e663bc8c0969d2c7541358bb47bf566

上图是Fuxi Master重启恢复的示意图。Fuxi Master重启后会通知Tubo,上报在该Tubo上分配的情况。

规模挑战

分布式系统设计主要目标之一就是横向扩展,也叫水平扩展。

多线程异步

b46e36b7836b3fc038cdb0f1612bb1ccfebd9343

以通信模块为例,使用线程池高效处理海量的通信消息,不同的节点之间互不阻塞,独立”泳道”解决队头阻塞(HoL)问题。比如,App Master除了与Fuxi Master有通信外,还与大量Tubo有通信,通常采用线程池处理进来的RPC消息。但是,如果App Master将Fuxi Master与Tubo的消息混在一个队列中,那么Fuxi Master的消息会被大量的Tubo消息阻塞。实际上,Fuxi Master的消息更为重要些。因此,好的做法事为Fuxi Master准备一个单独的队列防止阻塞。

增量资源调度

8cb9b0066976bb251932dc81d6a564533f840816

Fuxi采用增量消息和资源调度。比如通常的做法,App Master申请1000个单位,Fuxi Master只有200个空闲资源,App Master接着申请剩余的800,此时Fuxi Master没有空闲资源。然后接着申请,这种协议消息比较繁琐,App Master需要多次申请才能拿到需要的资源。而在伏羲里,App Master只申请一次,Fuxi Master一旦有资源就分配给App Master,效率比较高。

安全与性能隔离

伏羲系统中定义了可信区域边界,并且提供了全链路的访问控制,比如:Client端不可信区域访问伏羲系统,伏羲系统内部RPC通信,系统访问外部存储等资源。伏羲安全访问验证精细到每个RPC,在Tubo上运行代码时,伏羲提供进程级别沙箱(Sandbox)隔离。系统设计时要求节点上多个进程间性能隔离,不能互相干扰。

总结

伏羲分布式调度资源任务两层架构,支持超大规模,水平扩展,提供优先级、抢占、Quota等灵活的资源调度功能。DAG任务调度,高效容错和长尾处理,任务之间有效隔离,提供全链路安全ACL。

这篇关于伏羲—阿里云分布式调度系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/799945

相关文章

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

TP-LINK/水星和hasivo交换机怎么选? 三款网管交换机系统功能对比

《TP-LINK/水星和hasivo交换机怎么选?三款网管交换机系统功能对比》今天选了三款都是”8+1″的2.5G网管交换机,分别是TP-LINK水星和hasivo交换机,该怎么选呢?这些交换机功... TP-LINK、水星和hasivo这三台交换机都是”8+1″的2.5G网管交换机,我手里的China编程has

基于Qt实现系统主题感知功能

《基于Qt实现系统主题感知功能》在现代桌面应用程序开发中,系统主题感知是一项重要的功能,它使得应用程序能够根据用户的系统主题设置(如深色模式或浅色模式)自动调整其外观,Qt作为一个跨平台的C++图形用... 目录【正文开始】一、使用效果二、系统主题感知助手类(SystemThemeHelper)三、实现细节

CentOS系统使用yum命令报错问题及解决

《CentOS系统使用yum命令报错问题及解决》文章主要讲述了在CentOS系统中使用yum命令时遇到的错误,并提供了个人解决方法,希望对大家有所帮助,并鼓励大家支持脚本之家... 目录Centos系统使用yum命令报错找到文件替换源文件为总结CentOS系统使用yum命令报错http://www.cppc

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推