从技术原理看元宇宙的可能性:Omniverse如何“造”火星

2024-03-11 15:40

本文主要是介绍从技术原理看元宇宙的可能性:Omniverse如何“造”火星,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
    • 如何“造”火星?
    • 数字资产、数字协同与实时光线追踪技术为什么重要?


前言

从元宇宙成为热词至今,外界对其的态度逐渐从好奇转向怀疑,似乎又多了一个新的泡沫,一个用来“涨估值”的概念。这背后的原因可能就在于人人都在讨论元宇宙,但好像没有人能真正说清楚什么是元宇宙。

对于这种现状,科幻作家陈楸帆认为,当下大可不必过多地探讨定义本身,“因为对于一个正处于进行时态中的概念,定义便意味着局限。当元宇宙还没有完全成型的时候,一千个人眼中会有一千个元宇宙,而置身其中的每个人都会如盲人摸象般,有全然不同的角度、诉求和观感。”

对于元宇宙的学术讨论也有很多,中央民族大学文学院副教授安静在中国中外文艺理论学会第19届年会论文中写道,“自从奥卡姆的威廉和中世纪唯名论的哲学家以来,世界的本体性就产生了至少两个分层,一个是我们可以感知的物理世界,一个是由各种符号所构造的无数个可能世界。在符号的世界中,一直以来有两个基本的分野,那就是自然科学与人文科学。”

安静认为,进入元宇宙的世界,符号指称的内外之别从此消失,它重新回到唯名论语境下的中立状况,它指向一个构造的平行世界,也指向人的观念意识,还意味着符号本身和人本身无限缩小的关系。

似乎非常抽象,简单抓住一个易理解的关键词“平行世界”,某种程度上可以将元宇宙理解为“造世界”,用符号构造出无数个与物理世界体验非常相似的虚拟现实世界。“意思就是把现实中的事物进行数字化并复制出一个平行世界,我们每个人都可以拥有一个数字化的虚拟替身——阿凡达。这个替身可以在数字化场景中做任何事情,同时又会反过来影响现实世界,俗称打破次元壁。但这只是最为粗疏的描述,其中每一个名词都能分岔出无穷无尽的细枝末节。”陈楸帆在一篇文章中写道。

本篇文章希望从技术的角度,通过具体案例认识元宇宙背后“造世界”的工作原理,以此去合理设想元宇宙的未来可能。

在开始之前,我们可以先自问一个问题——我们是如何知道火星是什么样?

从没有亲眼见过,没有天文学、天体物理学知识积累,我们是如何建立起对火星的认识的?

如何“造”火星?

一个重要的来源可能就是各种相关的科学纪录片。那么科学纪录片中如此仿真的影像是怎么来的呢?要知道,太空中的很多画面不可能全程录像拍摄。比如科学纪录片《你好!火星》,制作团队需要精确还原当时的探火过程,而这个过程是不可能被由各个角度拍摄出来的。那要如何准确构建这个过程?

“在这种情况下,每个镜头、每个点都要进行精确剖析,客观地、真实地反映科学数据。”中央广播电视总台《你好!火星》纪录片技术负责人王子健对澎湃新闻(www.thepaper.cn)表示。
在这里插入图片描述

据王子健介绍,这个精确还原的过程通过Omniverse完成,“我们使用了USD模型,其优点就在于完全基于科学计算,能够一比一对照真实世界的场景,比如火星车和探测器。我们从科工局拿到火星探测器的脱敏数据,当时资料只有点云数据,Omniverse基于点云数据形成带有拓扑的多边形模型,然后存储成USD变成数字资产,在纪录片制作中就很方便可以直接使用。”

Omniverse是英伟达在2019年推出的实时3D设计协作工具,黄仁勋曾在2021GTC大会上介绍道,“Omniverse可以让个人模拟制造出遵从物理规律的共享3D虚拟世界”。 USD(Universal Scene Description,通用场景描述)则是Omniverse的基础。
在这里插入图片描述

USD最早来自动画公司皮克斯(Pixel)。在动画的制作流程中,不同的分工会涉及不同的设计软件工具,那么在协同工作时,就需要进行格式转换等繁琐工作。后来,皮克斯提出统一场景的格式USD并在2016年对其开源,不同软件制作的3D内容由此可以统一使用USD格式,《驯龙高手3:隐秘的世界》就是用此方法制作出来。

“以PPT举例,可能5个人打开同一个PPT,公用数据流,一个人的更改另一个人可以马上看到。基于USD格式,则是在三维场景,一个人的更改另一个人可以即时看到,方便沟通和协作。”英伟达高级解决方案架构师宋毅明对澎湃新闻(www.thepaper.cn)表示。

王子健则以自己的实际工作内容举例,“最早期要拿三维软件做,做完一个模型要贴图,最后成为一个场景,渲染出来就变成照片输出,如3ds Max存储格式是3DS。但各个软件形成资产只能是自己的工程文件,资产的意思即能够交互,各家如果是自己的文件格式交互起来非常困难。这会造成什么结果呢?就是A软件模型做得挺好,B软件打开之后还得再去修改,修改之后的东西A软件再打开又需要再修改。”

USD的模式就基于标准化的数据结构,呈现的质量可以保证一致,即光照、色彩、整个模型本身材质表现都是统一的,所以在此基础上就可以实现协同创作。

“如果数字资产不能标准化,其实数字协同是没有办法实现的,所谓的协同工作就是空谈。”王子健继续说道。

怎么理解这里的“数字资产”,为什么数字协同如此重要?

数字资产、数字协同与实时光线追踪技术为什么重要?

据王子健解释,如果是以USD作为格式进行保存就可以被多个软件复用,从而这个格式的文件就被叫做数字资产。数字资产还有第二个功能即可迭代,这个迭代不被破坏。“比如我造了一个月球车,这个月球车是第一个版本,如果我造第二个版本起码得另存一个,然后就得破坏性地改。但USD可以避免这个问题,即在原有的基础上进行版本控制‘小修小改’。这样的话对数字资产的保存就会形成复用,也有了可追溯的可能性。”

那么在此基础上,才有了数字协同的可能。

在原来传统的模式下,整个线性的工作流程下,视觉导演到最后一刻才能看到完整的成片,如果有改变那么一切都要相适应调整,甚至从头改。这样损耗就非常大,造成的直接结果就是制作周期显著拉长,伴随的还有人员以及设备的开销,整个花费就会剧增。

而基于实时的迭代模式,最重要的改变就是实现了“所见即所得”。也就是说,视觉导演能够观察到每一步,看到模型、场景,包括气氛等各种各样的元素摆在一起呈现的样貌,同时针对现有实时呈现的画面反过来即时修改台本。这就不只是单纯制作上传下达的任务模式,而是一个互相依托的迭代创作模式。

更进一步说,这样的技术支持下,创作思路实时的更改和变化可以直接被相关工种实时反应、迭代和呈现,这也是数字协同的意义。

另一个重要的技术进步则是实时光线追踪。2018年,英伟达发布了实时光线技术,将实时光线追踪与AI结合起来落地应用。

“光线追踪是一个理论,基于光线追踪这套理论才能完全模拟现实世界,做到模拟现实世界的渲染。2018年英伟达推出实时光线追踪技术,某种程度上算是倒逼工业流程,以前很多做不了的事情都可以做了。”王子健说道。

具体而言,比如一束光打到瓶子上,这样一个镜头可能有五秒钟。按照央视的标准一秒钟要渲染五十张照片,五秒钟就是二百五十张照片,以一张照片渲染八个小时计算就是2000小时。如果这个时候导演发现机位错了,需要重新再来一遍,那么2000小时就没用了。

实时光线追踪技术以后,2000小时就变成实时了,一秒钟能直接渲染五十张。这又关联到之前传统的线性工作模式,“为什么之前是线性的?因为大家都关注怎么减少沟通成本。但现在有实时渲染技术可以直接在现场看,所以才敢谈实时协同,成本一下子降低了。以前做一个片子可能需要三四个工作室,苦干半年,导演在几个工作室之间跑来跑去。现在一下子把制作变成扁平化了,几十个人在一个环境下花一两个月就把片子做出来了。”王子健谈道。

“实时光线追踪技术让我们看到一个新的可能,它可能会给创意市场增加2000-3000亿美金市场,促进设计师用这样的技术做出他的作品。有了图形可视化与AI之后,后来发现还可以结合以前做的物理学引擎、XR技术,之后就进一步衍生出把这个技术打造成一个平台的想法。后来发布的Omniverse就是包含各种渲染技术提升的结果。”英伟达中国区 Omniverse 业务发展经理何展表示。

对于最新的技术进展,王子健则表示,“在此基础上现在又在进一步增强,使得实时渲染高质量照片级的结果越来越高,多个渲染器之间可以无缝衔接,一个场景一个按钮,比如把Real-time改成Penetrating。最后就是物理模拟、机械单元组的模拟,等于是可以通过虚拟的数字世界控制现实世界。”

这篇关于从技术原理看元宇宙的可能性:Omniverse如何“造”火星的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/798257

相关文章

乐鑫 Matter 技术体验日|快速落地 Matter 产品,引领智能家居生态新发展

随着 Matter 协议的推广和普及,智能家居行业正迎来新的发展机遇,众多厂商纷纷投身于 Matter 产品的研发与验证。然而,开发者普遍面临技术门槛高、认证流程繁琐、生产管理复杂等诸多挑战。  乐鑫信息科技 (688018.SH) 凭借深厚的研发实力与行业洞察力,推出了全面的 Matter 解决方案,包含基于乐鑫 SoC 的 Matter 硬件平台、基于开源 ESP-Matter SDK 的一

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

持久层 技术选型如何决策?JPA,Hibernate,ibatis(mybatis)

转自:http://t.51jdy.cn/thread-259-1-1.html 持久层 是一个项目 后台 最重要的部分。他直接 决定了 数据读写的性能,业务编写的复杂度,数据结构(对象结构)等问题。 因此 架构师在考虑 使用那个持久层框架的时候 要考虑清楚。 选择的 标准: 1,项目的场景。 2,团队的技能掌握情况。 3,开发周期(开发效率)。 传统的 业务系统,通常业

亮相WOT全球技术创新大会,揭秘火山引擎边缘容器技术在泛CDN场景的应用与实践

2024年6月21日-22日,51CTO“WOT全球技术创新大会2024”在北京举办。火山引擎边缘计算架构师李志明受邀参与,以“边缘容器技术在泛CDN场景的应用和实践”为主题,与多位行业资深专家,共同探讨泛CDN行业技术架构以及云原生与边缘计算的发展和展望。 火山引擎边缘计算架构师李志明表示:为更好地解决传统泛CDN类业务运行中的问题,火山引擎边缘容器团队参考行业做法,结合实践经验,打造火山

数据库原理与安全复习笔记(未完待续)

1 概念 产生与发展:人工管理阶段 → \to → 文件系统阶段 → \to → 数据库系统阶段。 数据库系统特点:数据的管理者(DBMS);数据结构化;数据共享性高,冗余度低,易于扩充;数据独立性高。DBMS 对数据的控制功能:数据的安全性保护;数据的完整性检查;并发控制;数据库恢复。 数据库技术研究领域:数据库管理系统软件的研发;数据库设计;数据库理论。数据模型要素 数据结构:描述数据库

AI元宇宙

随着科技的迅猛发展,人工智能(AI)迎来了一个宇宙大爆发的时代。特别是以GPT为代表的生成式大模型的诞生和不断进步,彻底改变了人们的工作和生活方式。程序员与AI协同工作写代码已成为常态,大模型不仅提高了工作效率,还为人类带来了无限的可能性。 AI元宇宙http://ai.toolxq.com/#/如同生物进化出眼睛打开了三维世界的元宇宙之后,GPT打开了人+AI工作模式的新时代,程序员的人生被划

计算机组成原理——RECORD

第一章 概论 1.固件  将部分操作系统固化——即把软件永恒存于只读存储器中。 2.多级层次结构的计算机系统 3.冯*诺依曼计算机的特点 4.现代计算机的组成:CPU、I/O设备、主存储器(MM) 5.细化的计算机组成框图 6.指令操作的三个阶段:取指、分析、执行 第二章 计算机的发展 1.第一台由电子管组成的电子数字积分和计算机(ENIAC) 第三章 系统总线

GaussDB关键技术原理:高性能(二)

GaussDB关键技术原理:高性能(一)从数据库性能优化系统概述对GaussDB的高性能技术进行了解读,本篇将从查询处理综述方面继续分享GaussDB的高性能技术的精彩内容。 2 查询处理综述 内容概要:本章节介绍查询端到端处理的执行流程,首先让读者对查询在数据库内部如何执行有一个初步的认识,充分理解查询处理各阶段主要瓶颈点以及对应的解决方案,本章以GaussDB为例讲解查询执行的几个主要阶段

(1995-2022年) 全国各省份-技术交易活跃度

技术交易活跃度是一个关键指标,用于衡量技术市场的交易频繁程度和活跃性。它不仅显示了市场参与者对技术交易的参与热情,而且交易的频率也体现了市场的活力。这一指标对于不同的利益相关者具有不同的意义: 对投资者而言,技术交易活跃度是把握市场趋势、评估交易策略和预测市场波动的重要工具。对企业来说,技术交易活跃度反映了其技术创新的活跃程度和市场竞争的激烈程度,有助于企业制定技术创新和市场竞争策略。对政策制定

【计算机组成原理】部分题目汇总

计算机组成原理 部分题目汇总 一. 简答题 RISC和CICS 简要说明,比较异同 RISC(精简指令集)注重简单快速的指令执行,使用少量通用寄存器,固定长度指令,优化硬件性能,依赖软件(如编译器)来提升效率。 CISC(复杂指令集)包含多样复杂的指令,能一条指令完成多步操作,采用变长指令,减少指令数但可能增加执行时间,倾向于硬件直接支持复杂功能减轻软件负担。 两者均追求高性能,但RISC