NUMA(Non-Uniform Memory Access)架构的介绍

2024-03-11 07:52

本文主要是介绍NUMA(Non-Uniform Memory Access)架构的介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. NUMA由来

最早的CPU是以下面这种形式访问内存的:

在这种架构中,所有的CPU都是通过一条总线来访问内存,我们把这种架构叫做SMP架构(Symmetric Multi-Processor),也就是对称多处理器结构。可以看出来,SMP架构有下面4个特点:

  • CPU和CPU以及CPU和内存都是通过一条总线连接起来
  • CPU都是平等的,没有主从关系
  • 所有的硬件资源都是共享的,即每个CPU都能访问到任何内存、外设等
  • 内存是统一结构和统一寻址的(UMA, Uniform Memory Architecture)

但是随着CPU多核技术的发展,一颗物理CPU中集成了越来越多的core,导致SMP架构的性能瓶颈越来越明显,因为所有的处理器都通过一条总线连接起来,因此随着处理器的增加,系统总线成为了系统瓶颈,另外,处理器和内存之间的通信延迟也较大。

为了解决SMP架构下不断增多的CPU Core导致的性能问题,NUMA架构应运而生,NUMA调整了CPU和内存的布局和访问关系,具体示意如下图:

在NUMA架构中,将CPU划分到多个NUMA Node中,每个Node有自己独立的内存空间和PCIE总线系统。各个CPU间通过QPI总线进行互通。

CPU访问不同类型节点内存的速度是不相同的,访问本地节点的速度最快,访问远端节点的速度最慢,即访问速度与节点的距离有关,距离越远,访问速度越慢,所以叫做非一致性内存访问,这个访问内存的距离我们称作Node Distance。

虽然NUMA很好的解决了SMP架构下CPU大量扩展带来的性能问题,但是其自身也存在着不足,当Node节点本地内存不足时,需要跨节点访问内存,节点间的访问速度慢,从而也会带来性能的下降。所以我们在编写应用程序时,要充分利用NUMA系统的这个特点,尽量的减少不同CPU模块之间的交互,避免远程访问资源,如果应用程序能有方法固定在一个CPU模块里,那么应用的性能将会有很大的提升。

2. NUMA架构下的CPU和内存分布

我们先厘清几个跟CPU有关的概念:

  • Socket:表示一颗物理 CPU 的封装(物理 CPU 插槽),简称插槽。为了避免将逻辑处理器和物理处理器混淆,Intel 将物理处理器称为插槽,Socket表示可以看得到的真实的CPU核 。
  • Core:物理 CPU 封装内的独立的一组程序执行的硬件单元,比如寄存器,计算单元等,Core表示的是在同一个物理核内逻辑层面的核。同一个物理CPU的多个Core,有自己独立的L1和L2 Cache,共享L3 Cache
  • Thread:使用超线程技术虚拟出来的逻辑 Core,需要 CPU 支持。为了便于区分,逻辑 Core 一般被写作 Processor。在具有 Intel 超线程技术的处理器上,每个内核可以具有两个逻辑处理器,这两个逻辑处理器共享大多数内核资源(如内存缓存和功能单元)。此类逻辑处理器通常称为 Thread 。超线程可以在一个逻辑核等待指令执行的间隔(等待从cache或内存中获取下一条指令),把时间片分配到另一个逻辑核。高速在这两个逻辑核之间切换,让应用程序感知不到这个间隔,误认为自己是独占了一个核。对于每个逻辑线程,拥有完整独立的寄存器集合和本地中断逻辑,共享执行单元和一二三级Cache,超线程技术可以带来20%~30%的性能提升。
  • Node:即NUMA Node,CPU+本地总线+内存=1 Node。

Socket、Core和Threads之间的关系示意如下:

在Linux系统中,可以用lscpu查看NUMA和CPU的对应关系:

从上图可以看到,这台机器,有两个Socket(每个Socket也就是一个物理CPU),每个Socket有4个Core,每个Core有2个线程(开启了超线程),所以共有2*4*2=16个vCore (virtual Core)。

使用numactl -H命令可以看到NUMA下的内存分布:

所以这台服务器上CPU和内存在NUMA下的分布如下:

NUMA架构下的CPU,先从逻辑Core开始编号,如果开启了超线程,就从Core总数的后面继续编号,例如上图中从cpu8开始之后的都是开启超线程之后的CPU线程。

需要注意的是,NUMA Node和socket并不一定是一对一的关系,在AMD的CPU中,可能更多见于NUMA Node比socket个数多(一般AMD的CPU的NUMA可以在BIOS中进行配置),而Intel的CPU中,NUMA Node可能比socket的个数还少。

参考链接:

什么是NUMA,我们为什么要了解NUMA - 知乎

这篇关于NUMA(Non-Uniform Memory Access)架构的介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/797155

相关文章

Java异常架构Exception(异常)详解

《Java异常架构Exception(异常)详解》:本文主要介绍Java异常架构Exception(异常),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. Exception 类的概述Exception的分类2. 受检异常(Checked Exception)

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

Python实现html转png的完美方案介绍

《Python实现html转png的完美方案介绍》这篇文章主要为大家详细介绍了如何使用Python实现html转png功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 1.增强稳定性与错误处理建议使用三层异常捕获结构:try: with sync_playwright(

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir

JAVA SE包装类和泛型详细介绍及说明方法

《JAVASE包装类和泛型详细介绍及说明方法》:本文主要介绍JAVASE包装类和泛型的相关资料,包括基本数据类型与包装类的对应关系,以及装箱和拆箱的概念,并重点讲解了自动装箱和自动拆箱的机制,文... 目录1. 包装类1.1 基本数据类型和对应的包装类1.2 装箱和拆箱1.3 自动装箱和自动拆箱2. 泛型2

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

微服务架构之使用RabbitMQ进行异步处理方式

《微服务架构之使用RabbitMQ进行异步处理方式》本文介绍了RabbitMQ的基本概念、异步调用处理逻辑、RabbitMQ的基本使用方法以及在SpringBoot项目中使用RabbitMQ解决高并发... 目录一.什么是RabbitMQ?二.异步调用处理逻辑:三.RabbitMQ的基本使用1.安装2.架构

四种Flutter子页面向父组件传递数据的方法介绍

《四种Flutter子页面向父组件传递数据的方法介绍》在Flutter中,如果父组件需要调用子组件的方法,可以通过常用的四种方式实现,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录方法 1:使用 GlobalKey 和 State 调用子组件方法方法 2:通过回调函数(Callb

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交