YOLOv6-3.0-目标检测论文解读

2024-03-11 04:40

本文主要是介绍YOLOv6-3.0-目标检测论文解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 摘要
  • 算法
    • 2.1网络设计
    • 2.2Anchor辅助训练
    • 2.3自蒸馏
  • 实验
    • 消融实验
  • 结论

论文: 《YOLOv6 v3.0: A Full-Scale Reloading 》
github: https://github.com/meituan/YOLOv6
上版本参考 YOLOv6

摘要

YOLOv6 v3.0中YOLOv6-N达到37.5AP,1187FPS;
YOLOv6-S达到45AP,484FPS;
扩展backbone及neck,YOLOv6-M/L达到50/52.8AP,耗时基本不变;
YOLOv6-L6在实时目标检测达到SOTA;图1中YOLOv6与其他版本进行比较。
在这里插入图片描述
YOLOv6贡献总结如下:
1、更新neck为RepBi-PAN,引入SiC模块及SimCSPSPPF Block;
2、使用对耗时无影响的AAT(Anchor-Aided Training)策略;
3、YOLOv6在backbone和neck中增加一个stage,强化在高分辨率输入下的表现;
4、引入一种自监督策略提升YOLOv6小模型性能,训练时使用高参数量DFL分支辅助训练回归分支,推理时去除,避免耗时增加。

算法

2.1网络设计

作者基于PAN,提出Bi-directional Concatenation(BiC)模块,如图2,融合backbone Ci-1层及Pi层特征,更多精确位置信号被保留,有利于小目标定位。
作者简化SPPF block为SimCSPSPPF Block,增强表达能力。YOLOv6中neck定义为RepBi-PAN。
在这里插入图片描述

2.2Anchor辅助训练

作者发现基于anchor的YOLOv6-N优于anchor-free方案,如表1
在这里插入图片描述
作者提出anchor辅助训练方案 (AAT)结合anchor-based及anchor-free优势,如图3,训练时辅助分支与anchor-free分支独立计算损失,辅助分支可帮助优化anchor-free head,推理时除去辅助分支,提升性能,速度不变。
在这里插入图片描述

2.3自蒸馏

上个版本YOLOv6中自监督损失函数如式1,使用DFL进行蒸馏框回归分支。
在这里插入图片描述
蒸馏早期教师模型使用软标签,随着训练进行硬标签更合适,因此作者对蒸馏权重使用余弦weight decay,如式3,
在这里插入图片描述
DFL将影响模型推理速度,对此作者设计Decoupled Localization Distillation(DLD),蒸馏时,学生装备原始回归分支和与DFL结合的辅助分支,教师仅使用辅助分支,原始回归分支使用硬标签训练,辅助分支使用硬标签及教师模型更新;蒸馏后,移除辅助分支。

实验

作者使用FP16精度进行各个方案比较,结果如表2,图1所示,
在这里插入图片描述
YOLOv6-N超越YOLOv5-N/YOLOv7-Tiny 9.5%/4.2%;
YOLOv6-S超越YOLOX-S/PPYOLOE-S 3.5%/0.9%,且耗时更短;
YOLOv6- M超越YOLOv5-M 4.6;
YOLOv6-L超越YOLOX-L/PPYOLOE-L 3.1%/1.4%;
与YOLOv8系列相比,性能接近。

作者类似YOLOv5在backbone 增加C6层用于检测更大目标,neck相应做出调整, 分别命名为YOLOv6- N6/S6/M6/L6;实验结果如表2,
与YOLOv5相比,性能提升,推理速度基本不变;
与YOLOv7-E6E相比,YOLOv6-L6性能提升0.4,耗时缩短63%;

消融实验

消融实验如表3,BiC+SimCSPSPPF使得性能提升0.6%;AAT使得性能提升0.3%;DLD使得性能提升0.7%;
在这里插入图片描述
BiC模块影响实验如表4,在PAN top-down路径插入BiC,YOLOv6-S/L性能提升0.6%/0.4%;但插入bottom-up路径为带来增益,作者分析由于bottom-up路径中BiC将导致检测头易混淆不同尺度特征;
在这里插入图片描述
表5表示不同类型SPP block影响,SimSPPF*3表示P3, P4 and P5层使用SimSPPF blocks,SimSPPCSPC在 YOLOv6-N/S上超越SimSPPF 1.6%/0.3%,但耗时增加;
在YOLOv6- N/S/M上,SimCSPSPPF超越SimSPPF 1.1%/0.4%/0.1%;
考虑到性能与耗时均衡,作者在YOLOv6-N/S使用SimCSPSPPF,YOLOv6-M/L使用SimSPPF blocks;
在这里插入图片描述
如表6,anchor辅助训练(AAT)在YOLOv6-S/M/L上,带来0.3%/0.5%/0.5%性能提升;在YOLOv6-N/S/M上小目标性能显著提升;
在这里插入图片描述
表7表明在YOLOv6-L上weight decay使得性能提升0.6%;
在这里插入图片描述
表8表明在YOLOv6-S上DLD带来0.7%性能提升;
在这里插入图片描述

结论

作者将YOLOv6进一步提升,在实时目标检测领域达到SOTA。

这篇关于YOLOv6-3.0-目标检测论文解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/796672

相关文章

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear