canny算子实现

2024-03-11 02:18
文章标签 实现 canny 算子

本文主要是介绍canny算子实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理:
在这里插入图片描述

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
实现:

/*** @description:	计算阶乘* @param n			自然数* @return			阶乘*/
int factorial(int n)
{int fac = 1;if (n == 0)	return fac;for (int i = 1; i <= n; ++i)	fac *= i;return fac;
}/*** @description:    获得Sobel平滑算子* @param size		掩膜大小* @return			Sobel平滑算子*/
cv::Mat getSobelSmooth(int size)
{int n = size - 1;cv::Mat SobelSmoothoper = cv::Mat::zeros(size, 1, CV_32F);for (int k = 0; k <= n; k++){float *pt = SobelSmoothoper.ptr<float>(0);pt[k] = factorial(n) / (factorial(k)*factorial(n - k));}return SobelSmoothoper;
}/*** @description:   	获得Sobel差分算子* @param size		掩膜大小* @return			Sobel差分算子*/
cv::Mat getSobeldiff(int size)
{cv::Mat Sobeldiffoper = cv::Mat::zeros(cv::Size(size, 1), CV_32F);cv::Mat SobelSmooth = getSobelSmooth(size - 1);for (int k = 0; k < size; k++){if (k == 0)Sobeldiffoper.at<float>(0, k) = 1;else if (k == size - 1)Sobeldiffoper.at<float>(0, k) = -1;elseSobeldiffoper.at<float>(0, k) = SobelSmooth.at<float>(0, k) - SobelSmooth.at<float>(0, k - 1);}return Sobeldiffoper;
}/*** @description:	卷积实现* @param src		输入图像	* @param dst		输出图像* @param kernel	卷积核*/
void conv2D(cv::Mat& src, cv::Mat& dst, cv::Mat kernel)
{cv::flip(kernel, kernel, -1);cv::filter2D(src, dst, CV_32F, kernel);
}/*** @description:  	可分离卷积———先水平方向卷积,后垂直方向卷积* @param src		输入图像* @param dst		输出图像* @param kernel_X	x方向卷积* @param kernel_Y	y方向卷积*/
void sepConv2D_X_Y(cv::Mat& src, cv::Mat& dst, cv::Mat kernel_X, cv::Mat kernel_Y)
{cv::Mat dst_kernel_X;conv2D(src, dst_kernel_X, kernel_X); conv2D(dst_kernel_X, dst, kernel_Y); 
}/*** @description:  	可分离卷积———先垂直方向卷积,后水平方向卷积* @param src		输入图像* @param dst		输出图像* @param kernel_Y	y方向卷积* @param kernel_X	x方向卷积*/
void sepConv2D_Y_X(cv::Mat& src, cv::Mat& dst, cv::Mat kernel_Y, cv::Mat kernel_X)
{cv::Mat dst_kernel_Y;conv2D(src, dst_kernel_Y, kernel_Y);conv2D(dst_kernel_Y, dst, kernel_X); 
}/*** @description:	Sobel算子边缘检测* @param src		输入图像* @param dst		输出图像* @param dst_X		x方向边缘* @param dst_Y		y方向边缘* @param size		掩膜大小*/
void sobel(cv::Mat& src, cv::Mat& dst, cv::Mat& dst_X, cv::Mat& dst_Y, int size)
{cv::Mat SobelSmoothoper = getSobelSmooth(size);cv::Mat Sobeldiffoper = getSobeldiff(size);    sepConv2D_X_Y(src, dst_Y, SobelSmoothoper, Sobeldiffoper.t()); sepConv2D_Y_X(src, dst_X, SobelSmoothoper.t(), Sobeldiffoper); dst = abs(dst_X) + abs(dst_Y);convertScaleAbs(dst, dst);
}/*** @description:  	确定一个点的坐标是否在图像内* @param r			点的行坐标* @param c			点的列坐标* @param rows		图像行数* @param cols		图像列数* @return			点的坐标是否在图像内*/
bool checkInRange(int r, int c, int rows, int cols) 
{if (r >= 0 && r < rows && c >= 0 && c < cols)return true;elsereturn false;
}/*** @description:			从确定边缘点出发,延长边缘* @param edgeMag_noMaxsup	未经过极大值抑制的边缘强度* @param edge				图像边缘* @param Th				灰度阈值* @param r					点的行坐标* @param c					点的列坐标* @param rows				图像行数* @param cols				图像列数*/
void trace(cv::Mat &edgeMag_noMaxsup, cv::Mat &edge, float Th, int r, int c, int rows, int cols)
{if (edge.at<uchar>(r, c) == 0){for (int i = -1; i <= 1; ++i){for (int j = -1; j <= 1; ++j){if (checkInRange(r + i, c + j, rows, cols) && edgeMag_noMaxsup.at<float>(r + i, c + j) > Th)edge.at<uchar>(r, c) = 255;}}}
}/*** @description:		Canny边缘检测* @param src			输入图像* @param dst			输出图像* @param Tl			低灰度阈值* @param Th			高灰度阈值* @param ksize			sobel算子掩膜大小* @param L2graydient	是否使用L2灰度梯度*/
void canny(cv::Mat &src, cv::Mat &dst, float Tl, float Th, int ksize = 3, bool L2graydient = false)
{cv::GaussianBlur(src, src, cv::Size(3, 3), 0);cv::Mat dx, dy, sobel_dst;sobel(src, sobel_dst, dx, dy, ksize);cv::Mat edgeMag;if (L2graydient)magnitude(dx, dy, edgeMag);  elseedgeMag = abs(dx) + abs(dy); cv::Mat edgeMag_noMaxsup = cv::Mat::zeros(src.size(), CV_32F);for (int i = 1; i < src.rows - 1; ++i){for (int j = 1; j < src.cols - 1; ++j) {float angle =  atan2f(dy.at<float>(i, j), dx.at<float>(i, j)) / CV_PI * 180; float cur = edgeMag.at<float>(i, j);  if (abs(angle) < 22.5 || abs(angle) > 157.5){float left = edgeMag.at<float>(i, j - 1);float right = edgeMag.at<float>(i, j + 1);if (cur >= left && cur >= right)edgeMag_noMaxsup.at<float>(i, j) = cur;}if ((angle >= 67.5 && angle <= 112.5) || (angle >= -112.5 && angle <= -67.5)) {float top = edgeMag.at<float>(i - 1, j);float down = edgeMag.at<float>(i + 1, j);if (cur >= top && cur >= down)edgeMag_noMaxsup.at<float>(i, j) = cur;}if ((angle>112.5 && angle <= 157.5) || (angle>-67.5 && angle <= -22.5)) {float right_top = edgeMag.at<float>(i - 1, j + 1);float left_down = edgeMag.at<float>(i + 1, j - 1);if (cur >= right_top && cur >= left_down)edgeMag_noMaxsup.at<float>(i, j) = cur;}if ((angle >= 22.5 && angle < 67.5) || (angle >= -157.5 && angle < -112.5)) {float left_top = edgeMag.at<float>(i - 1, j - 1);float right_down = edgeMag.at<float>(i + 1, j + 1);if (cur >= left_top && cur >= right_down)edgeMag_noMaxsup.at<float>(i, j) = cur;}}}dst = cv::Mat::zeros(src.size(), CV_8U);for (int i = 1; i < src.rows - 1; ++i) {for (int j = 1; j < src.cols - 1; ++j) {float mag = edgeMag_noMaxsup.at<float>(i, j);if (mag > Th)dst.at<uchar>(i, j) = 255;else if (mag < Tl)dst.at<uchar>(i, j) = 0;elsetrace(edgeMag_noMaxsup, dst, Th, i, j, src.rows, src.cols);}}
}

代码传送门:https://github.com/taifyang/OpenCV-algorithm

这篇关于canny算子实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/796281

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、