Linux动态追踪——ftrace

2024-03-10 23:04
文章标签 动态 linux 追踪 ftrace

本文主要是介绍Linux动态追踪——ftrace,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

摘要

1 初识

1.1 tracefs

1.2 文件描述

2 函数跟踪

2.1 函数的调用栈

2.2 函数调用栈

2.3 函数的子调用

3 事件跟踪

4 简化命令行工具

5 总结


摘要

        Linux下有多种动态追踪的机制,常用的有 ftrace、perf、eBPF 等,每种机制适应于不同的场景,今天学习一下ftrace的常见用法。

        ftrace 是一个内部跟踪器,旨在帮助开发人员查找内核内部发生的情况。ftrace 是几个分类跟踪实用程序的框架,其最常见的用途是函数跟踪、事件跟踪。

1 初识

1.1 tracefs

        ftrace 提供了类似于 procfs 的虚拟文件系统,以文件的形式为用户空间提供了交互接口。这样,我们不用依赖额外的工具,就能跟 ftrace 交互,完成跟踪的目标。

        ftracefs 挂载点通常位于 /sys/kernel/tracing 目录,如果你的这个目录下什么都没有,那么可以通过这个命令安装挂载点:

mount -t tracefs nodev /sys/kernel/tracing

        进入 tracing 目录查看,真是多:

[root@172 ~]# cd /sys/kernel/tracing/
[root@172 tracing]# ls
available_events            kprobe_events        set_ftrace_notrace  trace_marker_raw
available_filter_functions  kprobe_profile       set_ftrace_pid      trace_options
available_tracers           max_graph_depth      set_graph_function  trace_pipe
buffer_size_kb              options              set_graph_notrace   trace_stat
...

1.2 文件描述

        其中 available_tracers 描述了支持的跟踪器的种类,常用的是 function 和 function_graph

[root@172 tracing]# cat available_tracers 
hwlat blk function_graph wakeup_dl wakeup_rt wakeup function nop

        current_tracer 表示正在使用的跟踪器:

[root@172 tracing]# cat current_tracer 
nop

        available_filter_functions 为可跟踪的完整函数列表:

[root@172 tracing]# cat available_filter_functions  |grep "sys_open"
do_sys_open
__x64_sys_open
__ia32_sys_open
__x64_sys_openat
__ia32_sys_openat
__ia32_compat_sys_open
__ia32_compat_sys_openat
__x64_sys_open_by_handle_at
__ia32_sys_open_by_handle_at
__ia32_compat_sys_open_by_handle_at
proc_sys_open

        其它常见文件含义如下:

  • current_tracer:顾名思义为当前在用的跟踪器
  • function_profile_enabled:启用函数性能分析器
  • set_ftrace_filter:选择跟踪函数的列表
  • se_event_pid:设置跟踪进程的PID
  • tracing_on:启用跟踪
  • trace_options:跟踪的选项类型
  • trace_stat:函数性能分析输出的目录
  • trace:跟踪的输出文件

        ​​​​​​​看完了又好像啥都没看一样,还是看看实操什么样的!

2 函数跟踪

        前面写了,ftrace 支持好几种类型的跟踪器,这里实际使用一下看看效果如何。

2.1 函数的调用栈

        这里看下那个程序有调用到 fork 这个系统调用呢?通过 available_filter_functions 输出知道了其支持查看 _do_fork 这个函数的跟踪:

[root@172 tracing]# cat available_filter_functions | grep "fork"
_do_fork
...

        那我们就跟踪下 __do_fork 的调用:

# 设置跟踪器类型为 function
[root@172 tracing]# echo function > current_tracer 
# 设置要跟踪的函数名
[root@172 tracing]# echo _do_fork > set_ftrace_filter 
# 启用跟踪
[root@172 tracing]# echo 1 > tracing_on 
# 触发 fork 系统调用
[root@172 tracing]# ps aux | grep "bash" | grep -v "grep"
root        1485  0.0  0.7 236608  5940 pts/0    Ss   15:09   0:01 -bash

        查看 trace 输出:

[root@172 tracing]# cat trace
# tracer: function
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |bash-1485  [000] ....  2832.519248: _do_fork <-do_syscall_64bash-1485  [000] ....  2832.519502: _do_fork <-do_syscall_64bash-1485  [000] ....  2837.109585: _do_fork <-do_syscall_64bash-1485  [000] ....  2837.113690: _do_fork <-do_syscall_64bash-1485  [000] ....  2838.637411: _do_fork <-do_syscall_64bash-1485  [000] ....  2838.639147: _do_fork <-do_syscall_64

        其中 TASK-PID 表示调用 _do_fork 的进程 id,CPU 000 表示该进程运行在0号 cpu,TIMESTAMP 为函数调用的时间戳,FUNCTION 显示了 _do_fork 由  do_syscall_64 调用。

        执行完毕后还需要关闭跟踪:

[root@172 tracing]# echo 0 > tracing_on
[root@172 tracing]# echo > set_ftrace_filter 
[root@172 tracing]# echo > current_tracer 
[root@172 tracing]# echo nop > current_tracer

2.2 函数调用栈

        有时候只知道函数被哪些进程调用,信息可能还不够全面,我们需要知道详细的调用栈,方便理清执行流程。这就依赖 options/func_stack_track 选项了。具体执行过程跟刚刚还是差不多的。

[root@172 tracing]# echo function > current_tracer 
[root@172 tracing]# echo 0 >tracing_on 
[root@172 tracing]# echo _do_fork > set_ftrace_filter
# 开启跟踪函数的调用栈
[root@172 tracing]# echo 1 > options/func_stack_trace 
[root@172 tracing]# echo 1 > tracing_on 
[root@172 tracing]# cat trace
# tracer: function
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |bash-1485  [000] ....  4195.579130: _do_fork <-do_syscall_64bash-1485  [000] ....  4195.579157: <stack trace>=> 0xffffffffc0871061=> _do_fork=> do_syscall_64=> entry_SYSCALL_64_after_hwframebash-1485  [000] ....  4195.582865: _do_fork <-do_syscall_64bash-1485  [000] ....  4195.582882: <stack trace>=> 0xffffffffc0871061=> _do_fork=> do_syscall_64=> entry_SYSCALL_64_after_hwframe
[root@172 tracing]# echo 0 > tracing_on
[root@172 tracing]# echo 0 > options/func_stack_trace
[root@172 tracing]# echo > set_ftrace_filter 
[root@172 tracing]# echo nop > current_tracer

        这次的输出明显更全面了,可以看出调用栈最顶层的入口是 entry_SYSCALL_64_after_hwframe 函数。完事还是要记得关闭。

2.3 函数的子调用

        知道了函数的调用栈,没发现问题,可能调用都是合理的,这时候可能想知道这个函数内部做了些什么事情,有没有异常,这时就用到了 function_graph 跟踪器。

[root@172 tracing]# echo _do_fork > set_graph_function
[root@172 tracing]# echo function_graph > current_tracer
[root@172 tracing]# echo 1 > tracing_on
[root@172 tracing]# cat trace | head -n 20
# tracer: function_graph
#
# CPU  DURATION                  FUNCTION CALLS
# |     |   |                     |   |   |   |0)               |  _do_fork() {0)               |    copy_process.part.34() {0)   0.116 us    |      _raw_spin_lock_irq();0)               |      recalc_sigpending() {0)   0.099 us    |        recalc_sigpending_tsk();0)   1.068 us    |      }0)   0.475 us    |      tsk_fork_get_node();0)               |      kmem_cache_alloc_node() {0)               |        _cond_resched() {0)   0.109 us    |          rcu_all_qs();0)   1.074 us    |        }0)   0.105 us    |        should_failslab();0)   1.143 us    |        memcg_kmem_get_cache();0)   0.109 us    |        memcg_kmem_put_cache();0)   6.998 us    |      }0)               |      __memcg_kmem_charge() {
[root@172 tracing]# echo 0 > tracing_on 
[root@172 tracing]# echo nop > current_tracer
[root@172 tracing]# echo > set_graph_function

        输出中的 DURATION 列表示执行耗时,FUNCTION 下的调用层级也很明显

3 事件跟踪

        available_events 描述了 ftrace 支持跟踪的所有事件,这也是内核提前定义的一批静态跟踪点:

[root@172 tracing]# cat available_events | grep "kill"
syscalls:sys_exit_tkill
syscalls:sys_enter_tkill
syscalls:sys_exit_tgkill
syscalls:sys_enter_tgkill
syscalls:sys_exit_kill
syscalls:sys_enter_kill
[root@172 tracing]# cat available_events | grep "tcp"
tcp:tcp_probe
tcp:tcp_retransmit_synack
tcp:tcp_rcv_space_adjust
tcp:tcp_destroy_sock
tcp:tcp_receive_reset
tcp:tcp_send_reset
tcp:tcp_retransmit_skb
[root@172 tracing]# cat available_events | grep "net:"
net:netif_rx_ni_entry
net:netif_rx_entry
net:netif_receive_skb_entry
net:napi_gro_receive_entry
net:napi_gro_frags_entry
net:netif_rx
net:netif_receive_skb
net:net_dev_queue
net:net_dev_xmit_timeout
net:net_dev_xmit
net:net_dev_start_xmit

        支持的事件种类也比较多,有 syscall、net、tcp、udp 等等。netif_receive_skb 用于处理内核从网卡收到的网络包,其主要对收到的 skb 进行校验然后交给 IP 层处理。通过下面的命令查看 netif_receive_skb 支持的选项:

[root@172 tracing]# ls events/net/netif_receive_skb
enable  filter  format  hist  id  trigger

         让我们跟踪一下 netif_receive_skb 这个事件:

[root@172 tracing]# echo 1 > events/net/netif_receive_skb/enable
[root@172 tracing]# echo 1 > tracing_on 
[root@172 tracing]# cat trace
# tracer: nop
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |<idle>-0     [000] ..s.  7835.671429: netif_receive_skb: dev=eth0 skbaddr=0000000073ef12d9 len=40<idle>-0     [000] ..s.  7836.593411: netif_receive_skb: dev=eth0 skbaddr=0000000073ef12d9 len=92<idle>-0     [000] ..s.  7836.638960: netif_receive_skb: dev=eth0 skbaddr=00000000b6a6098d len=40
[root@172 tracing]# echo 0 > tracing_on 
[root@172 tracing]# echo 0 > events/net/netif_receive_skb/enable

4 简化命令行工具

        你可能觉得 tracefs 每次跟踪都涉及多个文件的操作,这也太麻烦了。实际上,也有一个同样烦恼于此的小哥提供了更简单的命令,可以一次性配置好几个文件,也就是 trace-cmd

        例如可以通过这样的命令来跟踪函数的调用栈:

# 执行跟踪命令一段时间
[root@172 /]# trace-cmd record -p function -l '_do_fork' --func-stackplugin 'function'
Hit Ctrl^C to stop recording
^CCPU0 data recorded at offset=0x4bf0004096 bytes in size
[root@172 /]# 
# 查看跟踪结果
[root@172 /]# trace-cmd report
cpus=1bash-1662  [000]   333.965070: function:             _do_forkbash-1662  [000]   333.965096: kernel_stack:         <stack trace>
=> __this_module (ffffffffc062e061)
=> _do_fork (ffffffff942b02c5)
=> do_syscall_64 (ffffffff9420419b)
=> entry_SYSCALL_64_after_hwframe (ffffffff94c000ad)

         跟踪函数的子调用:

[root@172 /]# 
[root@172 /]# trace-cmd record -p function_graph -g '_do_fork'plugin 'function_graph'
Hit Ctrl^C to stop recording
^CCPU0 data recorded at offset=0x4bf000208896 bytes in size
[root@172 /]# trace-cmd report | head -n20
cpus=1bash-1662  [000]   641.179614: funcgraph_entry:                   |  _do_fork() {bash-1662  [000]   641.179629: funcgraph_entry:                   |    copy_process.part.34() {bash-1662  [000]   641.179629: funcgraph_entry:        0.030 us   |      _raw_spin_lock_irq();bash-1662  [000]   641.179630: funcgraph_entry:                   |      recalc_sigpending() {bash-1662  [000]   641.179630: funcgraph_entry:        0.034 us   |        recalc_sigpending_tsk();bash-1662  [000]   641.179630: funcgraph_exit:         0.268 us   |      }bash-1662  [000]   641.179630: funcgraph_entry:        0.123 us   |      tsk_fork_get_node();bash-1662  [000]   641.179631: funcgraph_entry:                   |      kmem_cache_alloc_node() {

        跟踪静态事件:

[root@172 /]# trace-cmd record -e net:netif_receive_skb
Hit Ctrl^C to stop recording
^CCPU0 data recorded at offset=0x4bf0004096 bytes in size
[root@172 /]# trace-cmd report
cpus=1<idle>-0     [000]   770.613285: netif_receive_skb:    dev=eth0 skbaddr=0xffff8b4078ce4b00 len=40<idle>-0     [000]   771.040836: netif_receive_skb:    dev=eth0 skbaddr=0xffff8b4078ce4b00 len=112<idle>-0     [000]   771.473463: netif_receive_skb:    dev=eth0 skbaddr=0xffff8b4078ce4d00 len=203

5 总结

        事件跟踪主要依赖于内核中定义的静态事件点,这些事件点可以理解为内核中的特定位置,当某些特定事件发生时,例如系统调用、中断处理或进程状态改变等,这些事件点就会被触发。通过 tracefs 文件系统,开发人员可以启用这些事件点,从而收集有关内核某些部分运行情况的数据。事件跟踪的一个显著特点是它可以设定跟踪条件,使得跟踪过程更加精细化和有针对性。

        相比之下,函数跟踪则更加关注于程序执行过程中的函数调用情况。在函数跟踪中,ftrace 会在指定的函数入口添加 trace 函数,从而记录函数的调用栈和相关信息。这种跟踪方式使得开发人员能够观察到函数是如何被调用的,以及它们在执行过程中的行为。函数跟踪的一个优势在于它可以轻松地过滤出需要关注的函数,从而避免被大量无关信息淹没。

        总结来说,事件跟踪和函数跟踪在 ftrace 中各有侧重。事件跟踪主要关注内核中特定事件的发生和变化,而函数跟踪则更侧重于程序执行过程中的函数调用情况。根据具体的调试需求,开发人员可以选择使用合适的跟踪机制来获取所需的信息。

这篇关于Linux动态追踪——ftrace的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/795816

相关文章

VScode连接远程Linux服务器环境配置图文教程

《VScode连接远程Linux服务器环境配置图文教程》:本文主要介绍如何安装和配置VSCode,包括安装步骤、环境配置(如汉化包、远程SSH连接)、语言包安装(如C/C++插件)等,文中给出了详... 目录一、安装vscode二、环境配置1.中文汉化包2.安装remote-ssh,用于远程连接2.1安装2

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s

Linux之软件包管理器yum详解

《Linux之软件包管理器yum详解》文章介绍了现代类Unix操作系统中软件包管理和包存储库的工作原理,以及如何使用包管理器如yum来安装、更新和卸载软件,文章还介绍了如何配置yum源,更新系统软件包... 目录软件包yumyum语法yum常用命令yum源配置文件介绍更新yum源查看已经安装软件的方法总结软

linux报错INFO:task xxxxxx:634 blocked for more than 120 seconds.三种解决方式

《linux报错INFO:taskxxxxxx:634blockedformorethan120seconds.三种解决方式》文章描述了一个Linux最小系统运行时出现的“hung_ta... 目录1.问题描述2.解决办法2.1 缩小文件系统缓存大小2.2 修改系统IO调度策略2.3 取消120秒时间限制3

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

Linux:alias如何设置永久生效

《Linux:alias如何设置永久生效》在Linux中设置别名永久生效的步骤包括:在/root/.bashrc文件中配置别名,保存并退出,然后使用source命令(或点命令)使配置立即生效,这样,别... 目录linux:alias设置永久生效步骤保存退出后功能总结Linux:alias设置永久生效步骤

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用