2021-8-20 384. 打乱数组(洗牌算法)

2024-03-10 21:18

本文主要是介绍2021-8-20 384. 打乱数组(洗牌算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:

题目:
给你一个整数数组 nums ,设计算法来打乱一个没有重复元素的数组。

实现 Solution class:

Solution(int[] nums) 使用整数数组 nums 初始化对象
int[] reset() 重设数组到它的初始状态并返回
int[] shuffle() 返回数组随机打乱后的结果

示例:
输入
[“Solution”, “shuffle”, “reset”, “shuffle”]
[[[1, 2, 3]], [], [], []]
输出
[null, [3, 1, 2], [1, 2, 3], [1, 3, 2]]
解释
Solution solution = new Solution([1, 2, 3]);
solution.shuffle(); // 打乱数组 [1,2,3] 并返回结果。任何 [1,2,3]的排列返回的概率应该相同。例如,返回 [3, 1, 2]
solution.reset(); // 重设数组到它的初始状态 [1, 2, 3] 。返回 [1, 2, 3]
solution.shuffle(); // 随机返回数组 [1, 2, 3] 打乱后的结果。例如,返回 [1, 3, 2]

提示:
1 <= nums.length <= 200
-106 <= nums[i] <= 106
nums 中的所有元素都是 唯一的
最多可以调用 5 * 104 次 reset 和 shuffle
通过次数47,677提交次数82,987

题解:
思路
我们可以用一个简单的技巧来降低暴力算法的时间复杂度和空间复杂度,那就是让数组中的元素互相交换,这样就可以避免掉每次迭代中用于修改列表的时间了。

算法
Fisher-Yates 洗牌算法跟暴力算法很像。在每次迭代中,生成一个范围在当前下标到数组末尾元素下标之间的随机整数。接下来,将当前元素和随机选出的下标所指的元素互相交换 - 这一步模拟了每次从 “帽子” 里面摸一个元素的过程,其中选取下标范围的依据在于每个被摸出的元素都不可能再被摸出来了。

此外还有一个需要注意的细节,当前元素是可以和它本身互相交换的 ,否则生成最后的排列组合的概率就不对了。

复杂度分析
时间复杂度 : O(n);Fisher-Yates 洗牌算法时间复杂度是线性的,因为算法中生成随机序列,交换两个元素这两种操作都是常数时间复杂度的。
空间复杂度: O(n);因为要实现 重置 功能,原始数组必须得保存一份,因此空间复杂度并没有优化。

class Solution {
public:vector<int> randnums;vector<int> temp;void randall(vector<int> &randnums){int size=randnums.size();for(int i=0;i<size;i++){swap(randnums[i],randnums[i+rand()%(size-i)]);}return ;}Solution(vector<int>& nums) {randnums=nums;temp=nums;}/** Resets the array to its original configuration and return it. */vector<int> reset() {return temp;}/** Returns a random shuffling of the array. */vector<int> shuffle() {randall(randnums);return randnums;}
};/*** Your Solution object will be instantiated and called as such:* Solution* obj = new Solution(nums);* vector<int> param_1 = obj->reset();* vector<int> param_2 = obj->shuffle();*/

这篇关于2021-8-20 384. 打乱数组(洗牌算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/795530

相关文章

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

C++原地删除有序数组重复项的N种方法

《C++原地删除有序数组重复项的N种方法》给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度,不要使用额外的数组空间,你必须在原地修改输入数组并在使用O(... 目录一、问题二、问题分析三、算法实现四、问题变体:最多保留两次五、分析和代码实现5.1、问题分析5.

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Java中数组转换为列表的两种实现方式(超简单)

《Java中数组转换为列表的两种实现方式(超简单)》本文介绍了在Java中将数组转换为列表的两种常见方法使用Arrays.asList和Java8的StreamAPI,Arrays.asList方法简... 目录1. 使用Java Collections框架(Arrays.asList)1.1 示例代码1.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为