身体姿态估计 openpose 安装指南

2024-03-10 09:08

本文主要是介绍身体姿态估计 openpose 安装指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

血泪教训,openpose安装了一周,才安装成功,接下来说一下如何成功地安装编译openpose。

由于我是在服务器上这个应用,系统的CUDA和Cudnn都已经事先安装好了,所以我接下来的教程都是在cuda和cudnn已经安装成功的基础上进行的。

根据openpose的官方guthub上的安装指南 https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/installation.md 需要安装opencv和caffe,这里就有一个问题了,我就是在这块被困住了。大部分人会先分别安装opencv和caffe然后再编译安装openpose,问题就在安装caffe的时候,我们可能会到caffe的官方github地址https://github.com/BVLC/caffe 下载源码安装,但是如果到这里下载编译安装caffe,在后期运行Openpose提供的例./build/examples/openpose/openpose.bin --video examples/media/video.avi   时,会报错,因此在编译安装caffe的时候,一定要下载指定的caffe版本,地址为 https://github.com/CMU-Perceptual-Computing-Lab/caffe/tree/b5ede488952e40861e84e51a9f9fd8fe2395cc8a

如果下载这个版本的caffe编译安装就不会出现问题了。

家下来分三个部分写安装过程:

(1)安装opencv

(2)编译caffe

(3)编译openpose

一.安装opencv:

  最好是安装3.几的版本,不要安装4.0及以后的版本。 https://github.com/opencv/opencv/tree/master  注意选择

版本下载后进入安装过程:

(1)安装一些依赖文件:

   sudo apt-get install build-essential

    sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev 

(2)解压压缩包,进入opencv解压后的文件夹:

     mkdir build

     cd build

     cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..

     make  -j7

     sudo make install

至此opencv已经安装完成,写一个小代码检测是否成功:

#include<iostream>
#include<opencv2/opencv.hpp>using namespace std;
using namespace cv;int main()
{Mat img = imread("me.png");imshow("ME",img);waitKey(0);return 0;
}

这是一个显示图片的小图片,如果能够显示图片,则说明Opencv安装成功。这个小程序文件名称为test.cpp  。编译语法为

 g++  -std=c++11 test.cpp -o test `pkg-config --cflags --libs opencv`

编译后生成 test 文件,运行这个可执行文件  ./test  

显示结果如图所示:

二.编译CAFFE

下载完成openpose指定的caffe源码后,解压这个压缩包,然后进入源码文件夹

 新建一个文件 makefile.config   打开这个文件,将下面的代码复制粘贴进这个新建的文件,然后保存

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# This code is taken from https://github.com/sh1r0/caffe-android-lib
# USE_HDF5 := 0# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#	You should not set this flag if you will be reading LMDBs with any
#	possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1# Uncomment if you're using OpenCV 3OPENCV_VERSION := 3# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda-9.0
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.CUDA_ARCH :=	-gencode arch=compute_30,code=sm_30 \-gencode arch=compute_35,code=sm_35 \-gencode arch=compute_50,code=sm_50 \-gencode arch=compute_52,code=sm_52 \-gencode arch=compute_60,code=sm_60 \-gencode arch=compute_61,code=sm_61 \-gencode arch=compute_61,code=compute_61# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \# $(ANACONDA_HOME)/include/python2.7 \# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5  /usr/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5 /usr/lib/x86_64-linux-gnu/hdf5/serial# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0# enable pretty build (comment to see full commands)
Q ?= @

 

这和文件里面涉及到CUDA和CUDNN是否使用的选择,因为我要使用这两个东西,所以都设置为使用,注意这里面的 

CUDA_DIR := /usr/local/cuda-9.0

路径要设置为自己的CUDA路径,前缀/usr/local  应该都一样,就看看自己的CUDA版本是否一样,根据自己的进行改进就行。

然后运行

make all

make test

make  runtset

在编译的过程中,如果出现    fatal error: ****.h: No such file or directory 的错误指令,那么就说明编译指令没找到****.h这个头文件,那么我们打开一个终端,运行    locate ****.h   查看这个文件在什么位置,然后到makefile.config 中找到INCLUDE_DIRS :=   这个字段,将对应的目录加入到后面。

三.编译openpose

先进入openpose源码的文件夹,然后建立build文件夹:

make build

cd build

cmake  -D CUDA_TOOLKIT_ROOT=/usr/local/cuda-9.0  -D BUILD_CAFFE=OFF -D Caffe_INCLUDE_DIRS=/home/tcr/test_caffe/caffe/include -D Caffe_LIBS=/home/tcr/test_caffe/caffe/build/lib/libcaffe.so ..

make -j `nproc`

这篇关于身体姿态估计 openpose 安装指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/793742

相关文章

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

LinuxMint怎么安装? Linux Mint22下载安装图文教程

《LinuxMint怎么安装?LinuxMint22下载安装图文教程》LinuxMint22发布以后,有很多新功能,很多朋友想要下载并安装,该怎么操作呢?下面我们就来看看详细安装指南... linux Mint 是一款基于 Ubuntu 的流行发行版,凭借其现代、精致、易于使用的特性,深受小伙伴们所喜爱。对

macOS怎么轻松更换App图标? Mac电脑图标更换指南

《macOS怎么轻松更换App图标?Mac电脑图标更换指南》想要给你的Mac电脑按照自己的喜好来更换App图标?其实非常简单,只需要两步就能搞定,下面我来详细讲解一下... 虽然 MACOS 的个性化定制选项已经「缩水」,不如早期版本那么丰富,www.chinasem.cn但我们仍然可以按照自己的喜好来更换

Linux(Centos7)安装Mysql/Redis/MinIO方式

《Linux(Centos7)安装Mysql/Redis/MinIO方式》文章总结:介绍了如何安装MySQL和Redis,以及如何配置它们为开机自启,还详细讲解了如何安装MinIO,包括配置Syste... 目录安装mysql安装Redis安装MinIO总结安装Mysql安装Redis搜索Red

python安装完成后可以进行的后续步骤和注意事项小结

《python安装完成后可以进行的后续步骤和注意事项小结》本文详细介绍了安装Python3后的后续步骤,包括验证安装、配置环境、安装包、创建和运行脚本,以及使用虚拟环境,还强调了注意事项,如系统更新、... 目录验证安装配置环境(可选)安装python包创建和运行Python脚本虚拟环境(可选)注意事项安装

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram