DP-股票买卖问题

2024-03-10 04:10
文章标签 问题 dp 股票买卖

本文主要是介绍DP-股票买卖问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 股票买卖问题
  • 第一题,k = 1
    • 标准写法
    • 状态压缩(重点)
  • 第二题,k = +infinity
    • 标准写法
    • 状态压缩
  • 第四题,k = any integer
  • 第五题,k = +infinity with cooldown
  • 第六题,k = +infinity with fee
  • 总结

股票买卖问题

股票买卖问题是一类十分经典的动态规划问题,问题描述如下:

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1(股票价格 = 2) 的时候买入,在第 2(股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2
输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2(股票价格 = 2) 的时候买入,在第 3(股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。随后,在第 5(股票价格 = 0) 的时候买入,在第 6(股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3

上面就是最基本的股票买卖问题,还有其他几个变种题,原理都是一样的,掌握最基本的原理,其他都是小case。

下面分析怎么利用动态规划的思想求解上面的问题:

1、三种状态:天数、允许交易的最大次数、当前的股票持有状态(不妨用 1 表示持有,0 表示没有持有)。

三种状态定义dp数组:

dp[i][k][2]
i为当前天数
k 为当前的最多交易数
举例:
`dp[3][2][1]` 的含义就是:今天是第三天,我现在手上持有着股票,至今最多可以进行 2 次交易。

3、三种选择:买入、卖出、无操作
我们用 buy, sell, rest 表示这三种选择。但问题是,并不是每天都可以任意选择这三种选择的,因为 sell 必须在 buy 之后,buy 必须在 sell 之后。那么 rest 操作还应该分两种状态,一种是 buy 之后的 rest(持有了股票),一种是 sell 之后的 rest(没有持有股票)。而且别忘了,我们还有交易次数 k 的限制,就是说你 buy 还只能在 k > 0 的前提下操作。

由三种选择可以写出下面的状态转移方程(核心)
在这里插入图片描述
2、base case

dp[-1][...][0] = 0
解释:因为 i 是从 0 开始的,所以 i = -1 意味着还没有开始,这时候的利润当然是 0。dp[-1][...][1] = -infinity
解释:还没开始的时候,是不可能持有股票的。
因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。dp[...][0][0] = 0
解释:因为 k 是从 1 开始的,所以 k = 0 意味着根本不允许交易,这时候利润当然是 0。dp[...][0][1] = -infinity
解释:不允许交易的情况下,是不可能持有股票的。
因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。

4、最终答案: dp[ n - 1 ] [ K] [0]
最后一天,最多允许 K 次交易,手上股票交易完 的情况下,获得的利润最大。

以上就是对股票买卖问题的理论分析,下面就是leetcode上股票买卖问题全家桶了

第一题,k = 1

买卖股票的最佳时机

标准写法

思路:
直接套状态转移方程,根据 base case,可以做一些化简:

dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
dp[i][1][1] = max(dp[i-1][1][1], dp[i-1][0][0] - prices[i])  

由于dp[i-1][0][0] = 0 因为没法交易时肯定利润为0,所以省略dp[i-1][0][0]得到:

dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
dp[i][1][1] = max(dp[i-1][1][1], -prices[i])

可以发现上面的 k 取值都是 1,没有取值为0的情况,那么一个常数是可以直接省略的,即 k 对状态转移已经没有影响了。
可以进行进一步化简去掉所有 k:

dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], -prices[i])

代码:

class Solution {public int maxProfit(int[] prices) {int n = prices.length;int[][] dp = new int[n][2];//base case 第一天dp[0][0]=0;dp[0][1]=-prices[0]; for (int i = 1; i < n; i++) { //从第2天开始往后dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);dp[i][1] = Math.max(dp[i-1][1], -prices[i]);}return dp[n - 1][0];}
}

状态压缩(重点)

注意一下状态转移方程,新状态只和相邻的一个状态有关,所以不用定义dp 数组记录结果,只需要一个变量储存相邻的那个状态就足够了,这样可以把空间复杂度降到 O(1)

class Solution {public int maxProfit(int[] prices) {int n = prices.length;//第一天int dp0=0,dp1=-prices[0]; for (int i = 1; i < n; i++) { //从第2天开始往后dp0=Math.max(dp0,dp1+prices[i]);dp1=Math.max(dp1,-prices[i]);}return dp0;}
}

第二题,k = +infinity

买卖股票的最佳时机 II

标准写法

如果 k 为正无穷,那么就可以认为 k 和 k - 1 是一样的。数组中的 k 已经不会改变了,也就是说不需要记录 k 这个状态了:
所以现在的状态转移方程就如下:

dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])

代码:

class Solution {public int maxProfit(int[] prices) {int n=prices.length;int[][]dp=new int[n][2];dp[0][0]=0;dp[0][1]=-prices[0];for (int i =1; i < n; i++) {dp[i][0]=Math.max(dp[i-1][0],dp[i-1][1]+prices[i]);dp[i][1]=Math.max(dp[i-1][1],dp[i-1][0]-prices[i]);}return dp[n-1][0];}
}

状态压缩

class Solution {public int maxProfit(int[] prices) {int n=prices.length;int dpNon=0,dpGet=-prices[0];for(int i=1;i<n;i++){int temp=dpNon; //将dpNon保存下来,更新dpGet时需要用到,不然在第1步时dpNon被更新了dpNon=Math.max(dpNon,dpGet+prices[i]);//1dpGet=Math.max(dpGet,temp-prices[i]);}return dpNon;}
}

第四题,k = any integer

买卖股票的最佳时机 IV

本题就是一开始分析的最经典的股票买卖问题,k取任意正整数

注意: 当k 值非常大时,会出现一个超内存的错误,现在想想,交易次数 k 最多有多大呢?

一次交易由买入和卖出构成,至少需要两天。所以说有效的限制 k 应该不超过 n/2,如果超过,就没有约束作用了,相当于 k = +infinity。这种情况是之前解决过的。

直接把之前的代码重用:

class Solution {public int maxProfit(int k, int[] prices) {int n=prices.length;//采用k无限次的方法进行优化if (k>n/2){return maxProfit_inf(prices);}int[][][]dp=new int[n][k+1][2];for (int i = 0; i <n; i++) {for (int j = 1; j <= k; j++) {// base case if (i==0){dp[i][j][0]=0;dp[i][j][1]=-prices[i];continue;}dp[i][j][0]=Math.max(dp[i-1][j][0],dp[i-1][j][1]+prices[i]);dp[i][j][1]=Math.max(dp[i-1][j][1],dp[i-1][j-1][0]-prices[i]);}}return dp[n-1][k][0];}private int maxProfit_inf(int[] prices) {int dp0=0,dp1=Integer.MIN_VALUE; //prices数组长度可能为0,不能初始化为-prices[0];for (int i = 0; i < prices.length; i++) {int temp=dp0;dp0=Math.max(dp0,dp1+prices[i]);dp1=Math.max(dp1,temp-prices[i]);}return dp0;}
}

第五题,k = +infinity with cooldown

添加链接描述
每次 sell 之后要等一天才能继续交易。只要把这个特点融入上一题的状态转移方程即可:

dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-2][0] - prices[i])
解释:第 i 天选择 buy 的时候,最晚 i-2天需要sell掉,所以从dp[i-2][0]的状态转移过来,而不是dp[i-1][0]
class Solution {public int maxProfit(int[] prices) {int n=prices.length;if(n<2){return 0;}int[][]dp=new int[n][2];//第一天dp[0][0]=0;dp[0][1]=-prices[0];//第二天dp[1][0]=Math.max(0,prices[1]-prices[0]); //可能没买,可能第0买第1天卖dp[1][1]= - Math.min(prices[0],prices[1]);//选择价格最低的那天买入for (int i =2; i < n; i++) { //从第三天往后dp[i][0]=Math.max(dp[i-1][0],dp[i-1][1]+prices[i]);dp[i][1]=Math.max(dp[i-1][1],dp[i-2][0]-prices[i]);}return dp[n-1][0];}
}

由于需要记录前两天的值,所以不方便使用状态压缩。
c++:

class Solution {
public:int maxProfit(vector<int>& prices) {int n=prices.size();if(n<2){return 0;}vector<vector<int>>dp(n,vector<int>(2));dp[0][0]=0;dp[0][1]=-prices[0];dp[1][0]=max(0,prices[1]-prices[0]);dp[1][1]=-min(prices[0],prices[1]);for(int i=2;i<n;i++){dp[i][0]=max(dp[i-1][0],dp[i-1][1]+prices[i]);dp[i][1]=max(dp[i-1][1],dp[i-2][0]-prices[i]);}return dp[n-1][0];}
};

第六题,k = +infinity with fee

买卖股票的最佳时机含手续费
每次交易要支付手续费,只要把手续费从利润中减去即可,买的时候缴纳手续费或者卖的时候缴纳都行,但是要保证统一

class Solution {public int maxProfit(int[] prices, int fee) {int n=prices.length;if(n<2){return 0;}int[][]dp=new int[n][2];dp[0][0]=0;dp[0][1]=-(prices[0]+fee); //买的时候缴纳手续费for (int i = 1; i < n; i++) {dp[i][0]=Math.max(dp[i-1][0],dp[i-1][1]+prices[i]);dp[i][1]=Math.max(dp[i-1][1],dp[i-1][0]-prices[i]-fee);//买的时候缴纳手续费}return dp[n-1][0];}
}

状态压缩:

class Solution {public int maxProfit(int[] prices, int fee) {int has=-prices[0],non=0;for(int i=1;i<prices.length;i++){has=Math.max(has,non-prices[i]);non=Math.max(non,has+prices[i]-fee);//卖的时候缴纳手续费}return non;}
}

总结

三个状态:当前天,当前可进行的操作次数k,当前是否持有股票
k=1时或∞时, k可以省略,且可以状态压缩
其他情况下k不能省,且不能状态压缩

base case :
第一天是否持有股票

dp[0][k][0] = 0 //不持有
dp[0][k][1] = -price[0] //在第一天如果持有股票的话,一定是在第一天买了股票

这篇关于DP-股票买卖问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/792992

相关文章

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

uva 10154 DP 叠乌龟

题意: 给你几只乌龟,每只乌龟有自身的重量和力量。 每只乌龟的力量可以承受自身体重和在其上的几只乌龟的体重和内。 问最多能叠放几只乌龟。 解析: 先将乌龟按力量从小到大排列。 然后dp的时候从前往后叠,状态转移方程: dp[i][j] = dp[i - 1][j];if (dp[i - 1][j - 1] != inf && dp[i - 1][j - 1] <= t[i]

uva 10118 dP

题意: 给4列篮子,每次从某一列开始无放回拿蜡烛放入篮子里,并且篮子最多只能放5支蜡烛,数字代表蜡烛的颜色。 当拿出当前颜色的蜡烛在篮子里存在时,猪脚可以把蜡烛带回家。 问最多拿多少只蜡烛。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cs