【硬件设计】(更新中)以 UCC27710 为例设计栅极驱动器元件选型(资料摘抄)

本文主要是介绍【硬件设计】(更新中)以 UCC27710 为例设计栅极驱动器元件选型(资料摘抄),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

还没更新完。。。。。。。 

 【仅作自学记录,不出于任何商业目的。如有侵权,请联系删除,谢谢!】

 本文摘抄翻译自:

  • Bootstrap Network Analysis: Focusing on the Integrated Bootstrap Functionality (infineon.com)
  • Bootstrap Circuitry Selection for Half Bridge Configurations (Rev. A)
  • 具有互锁功能的 UCC27710 620V、0.5A、1.0A 高侧低侧栅极驱动器 datasheet (Rev. B) (ti.com.cn)

【推荐阅读】

  • 自举电容
    • 一文了解BUCK电路自举电容_buck bootstrap pin design-CSDN博客
    • 自举电容-CSDN博客
    • 【大电流H桥电机驱动电路的设计与解析(包括自举电路的讲解,以IR2104+LR7843为例)】-CSDN博客
    • 以EG2133+NMOS为例讲解全桥驱动电路设计的所有知识点,包括驱动电阻,加速关断,下拉电阻,自举电路自举电容的选型和设计_eg2133检验工作电压-CSDN博客
    • 自举电路的基本拓扑结构及驱动方式-电子发烧友网 (elecfans.com)
    • 2024年全国大学生智能汽车竞赛直流无刷电机BLDC驱动电路设计,直流无刷电机驱动器 电调,气垫船电调设计,逐飞科技CH32V307,STC32G12K128_哔哩哔哩_bilibili
    • 几分钟搞定自举电路的知识要点 - 知乎 (zhihu.com)

1 栅极驱动器概述

        为了实现功率器件的快速开关并减少相关的开关功率损耗,在控制器的 PWM 输出功率半导体器件的栅极之间采用了强大的栅极驱动器。此外,当 PWM 控制器无法直接驱动开关器件的栅极时,栅极驱动器也是必不可少的。随着数字电源的出现,这种情况会经常遇到,因为来自数字控制器的 PWM 信号通常是 3.3V 逻辑信号,无法有效地打开电源开关。需要电平转换电路将 3.3V 信号提升至栅极驱动电压(例如 12V),以便完全开启功率器件并最大限度地减少传导损耗。传统的缓冲驱动电路以 NPN/PNP 双极晶体管为基础,采用发射极跟随器配置,由于缺乏电平转换功能,因此无法满足数字电源的要求。

        栅极驱动器有效地结合了电平转换缓冲驱动功能。栅极驱动器还满足其他需求,例如通过将大电流驱动器安装在靠近功率开关的位置,最大限度地降低高频开关噪声的影响;驱动栅极驱动变压器和控制浮动功率器件栅极;通过将栅极电荷功率损耗从控制器转移到驱动器中,降低功率耗散和控制器的热应力。

        UCC27710 是一款 620V 高侧和低侧栅极驱动器,具有 0.5A 拉电流、1.0A 灌电流能力,专用于驱动功率 MOSFET 或 IGBT。对于 IGBT,建议的 VDD 工作电压为 10V 至 20V;对于 MOSFET,建议的 VDD 工作电压为 17V:

        UCC27710 电气参数(在 VDD = VHB = 15V、COM = VHS = 0、-40°C<T J <+125°C 时)如下:

        其中,后文计算需用到的参数的典型值需重点关注:

  • I QBS(静态 HB-HS 电源电流):65μA

2 半桥驱动应用设计

        图 44 中的电路显示了使用 UCC27710 驱动典型半桥配置的参考设计示例,该配置可用于多种常见电源转换器拓扑,例如同步降压、同步升压、半桥/全桥隔离拓扑和电机驱动应用。

        表 4 显示了示例应用的参考设计参数: UCC27710 用于以高低侧配置驱动 650V MOSFET。

-Power Transistor:功率晶体管;Input signal amplitude:输入信号幅度;Switching Frequency:开关频率;DC Link Voltage:直流链路电压-

        以下过程概述了设计具有 0.5A 拉电流和 1.0A 灌电流能力的 600V 高侧、低侧栅极驱动器的步骤,旨在使用 UCC27710 驱动功率 MOSFET 或 IGBT。

2.1 HI 和 LI 低通滤波器元件的选择(R HI,R LI,C HI,C LI)

        建议用户避免对栅极驱动器的输入信号进行整形,以试图减慢(或延迟)驱动器输出处的信号。然而,最好在 PWM 控制器和 UCC27710 的输入引脚之间添加一个小型 RC 滤波器过滤高频噪声,如图 44 所示的 R HI & C HI 和 R LI & C LI

        这种滤波器应使用 10 Ω 至 100 Ω 范围内的 R HI、R LI,以及 10pF 至 220pF 范围内的 C HI、C LI。在本示例中,选择了 R HI = R LI = 49.9 Ω 和 C HI = C LI = 33pF 。

2.2 自举元件的选择

2.2.1 自举电路的基本工作原理 

        为栅极驱动器 IC 的高侧驱动电路供电的最广泛使用的方法之一是自举电源。自举电源由自举电阻(Bootstrap Resistor)自举二极管(Bootstrap Diode)自举电容(Bootstrap Capacitor)组成;该电路如 Figure 1 所示。

        自举电容电压 (VBS) 可以达到的最大电压取决于图 1 中所示的自举电路的元件。Rboot 上的压降、自举二极管的 VF、低压侧开关上的压降(VCEon 或 VFP,取决于流过开关的电流方向),以及放置在低压侧开关发射极和直流侧之间的分流电阻( Figure 1 中未显示)上的压降(如果存在),都需要考虑在内。

        自举电路采用半桥配置来为高侧 FET 提供偏置。图 2-1 展示了采用简化半桥配置的自举电路的充电路径。低压侧 FET 导通、高压侧 FET 关断时,HS 引脚和开关节点被拉低到;VDD 辅助电源通过旁路电容器经由自举二极管电阻为自举电容器充电

        如图 2-2 所示,当低压侧 FET 关断、高压侧开启时,栅极驱动器的 HS 引脚和开关节点被拉高至高压总线 HV;自举电容器通过栅极驱动器的 HO HS 引脚向高压侧 FET 释放部分存储电压(充电过程中积累的电压)。

 

2.2.2 自举电容的选择(C BOOT

        从设计角度来看,这是最重要的元件,因为它提供了低阻抗路径来提供高峰值电流,从而为高侧开关充电。根据一般的经验法则,该自举电容器的大小应确保能够提供足够的能量来驱动高侧 MOSFET 的栅极,而不会导致损耗超过 10%。该自举电容器应至少比高侧 FET 的栅极电容 Cg 大 10 倍。其原因是需要考虑直流偏置和温度导致的电容变化,另外还有负载瞬态期间跳过的周期。

        栅极电容 Cg 可以使用方程式 1 来确定:

C_{g} = \frac{Q_{g}}{V_{Q1g}}(1)

        其中:

  • Qg:栅极电荷(MOSFET 的数据手册);
  • VQ1g = VDD − VBootDiode(其中,VBootDiode:自举二极管上的正向压降)。

        确定栅极电荷 Cg 后,可以使用方程式 2 来估算自举电容的最小值:

C_{BOOT} \geqslant 10 \times × C_{g}(2)

        或者,可以使用方程式 3 来更准确地计算最小自举电容值:

C_{BOOT} \geqslant \frac{Q_{total}}{\Delta V_{HB}}(3)

Q_{total} = Q_{G} + I_{HBS} \times \frac{D_{max}}{f_{sw}} + \frac{I_{HB}}{f_{sw}}

        其中:

  • QG: MOSFET 栅极电荷(MOSFET 的数据手册);
  • IHBS:HB 到 VSS 漏电流(栅极驱动器的数据手册);
  • Dmax:最大占空比;
  • IHB:HB 静态电流(栅极驱动器的数据手册);
  • ∆VHB = VDD − VDH − VHBL,其中:
    • VDD:栅极驱动器 IC 的电源电压;
    • VDH:自举二极管正向压降(自举二极管数据手册);
    • VHBL:HBUVLO 下降阈值(栅极驱动器的数据手册)。

        需要注意的是,如果值低于所需的最小自举电容值,可能会激活驱动器的 UVLO,从而过早关断高侧 FET。另一 方面,较高的自举电容值会在某些情况下(在对自举电容器进行初始充电时或具有较窄的自举充电周期)导致较 低的纹波电压和较长的反向恢复时间,以及较高的峰值电流流过自举二极管。方程式 4 展示了自举电容与流经自 举二极管的峰值电流之间的关系:

I_{peak} = C_{BOOT} \times \frac{Dv}{dt}(4)

        通常建议使用具有良好额定电压 (2xVDD)、温度系数和电容差的低 ESR 和低 ESL、表面贴装型多层陶瓷电容器 (MLCC)。

        下面以 UCC27710 进行举例计算:

        启动电容器的大小应足以将 FET Q1 的栅极驱动至高电平,并为功率晶体管维持稳定的栅极驱动电压。每个开关周期所需的总电荷量通过以下式子估算:

        其中, 总栅极电荷 QG 取的 31.5nC 这一数值,应该在所用 P 沟道 MOSFET 的数据手册上可以找到或计算得出。

        QG 相关知识可参看:

  • ​​​​​​Can you explain more about MOSFET's Qg, Qgs, and Qgd parameters? | Renesas Customer Hub
  • Electrical characteristics of MOSFETs (Charge Characteristic Qg/Qgs1/Qgd/QSW/QOSS) | Toshiba Electronic Devices & Storage Corporation | Asia-English (semicon-storage.com)
  • 何谓总栅极电荷(Qg)_罗姆半导体集团(ROHM Semiconductor)

        本设计示例的目标电容器纹波电压为 0.5V。因此,CBOOT 的最低要求是:

        实际上,CBOOT 的值需要大于计算值。这样可以考虑直流偏压和温度引起的电容偏移,以及负载瞬态时发生的跳变周期。在本设计示例中,选择 220nF 电容器作为自举电容:

2.2.3 VDD 旁路/保持电容 (C VDD) 和 R BIAS 的选择

        为自举电容器充电的电荷必须来自某个较大的旁路电容器,通常为 VDD 旁路电容器。根据经验,此旁路电容器的大小应至少比自举电容器大 10 倍,以便它不会在自举电容器充电期间完全耗尽电荷。这样便可以在充电序列期间 正确地为自举电容器充电。在最坏的情况下,该 10 倍的比率会在 VDD 电容器上产生 10% 的最大纹波。

        VDD 电容 (CVDD) 应选择为至少比 CBOOT 大 10 倍,以便在为启动电容器充电时 VDD 电容器上的压降最小。对于本设计示例,选择了 2.2μF 电容:

        建议将 10 Ω 电阻 R_BIAS 与偏置电源和 VDD 引脚串联,以使 VDD 斜坡上升时间大于 20μs,以最大限度地减少 LO 和 HO 上升,如图 45 所示:

附 模电基础概念回顾——MOSFET

摘自:模拟电子技术基础(第四版)教材

        -源极 s    漏极 d    栅极 g-

        场效应管(FET,Feild Effect Transistor)是利用输入回路的电场效应来控制输出回路电流的一种半导体器件,并以此命名。由于它仅靠半导体中的多数载流子导电,又称单极型晶体管。 

        绝缘栅型场效应管的栅极与源极、栅极与漏极之间均采用SiO2绝缘层隔离,因此而得名。又因栅极为金属铝,故又称为MOS管(MOS,Metal-Oxide-Semiconductor)。与结型场效应管相同,MOS管也有N沟道P沟道两类,但每一类又分为增强型耗尽型两种,因此MOS管的四种类型为:N沟道增强型管N沟道耗尽型管P沟道增强型管P沟道耗尽型管。凡栅 - 源电压 ucs 为零时漏极电流也为零的管子均属于增强型管,凡栅 - 源电压 Ucs 为零时漏极电流不为零的管子均属于耗尽型管

  • N沟道增强型MOS管

  •  N沟道耗尽型MOS管

        特性曲线:

这篇关于【硬件设计】(更新中)以 UCC27710 为例设计栅极驱动器元件选型(资料摘抄)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/791742

相关文章

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

Linux Mint Xia 22.1重磅发布: 重要更新一览

《LinuxMintXia22.1重磅发布:重要更新一览》Beta版LinuxMint“Xia”22.1发布,新版本基于Ubuntu24.04,内核版本为Linux6.8,这... linux Mint 22.1「Xia」正式发布啦!这次更新带来了诸多优化和改进,进一步巩固了 Mint 在 Linux 桌面

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

如何安装HWE内核? Ubuntu安装hwe内核解决硬件太新的问题

《如何安装HWE内核?Ubuntu安装hwe内核解决硬件太新的问题》今天的主角就是hwe内核(hardwareenablementkernel),一般安装的Ubuntu都是初始内核,不能很好地支... 对于追求系统稳定性,又想充分利用最新硬件特性的 Ubuntu 用户来说,HWEXBQgUbdlna(Har

Ubuntu 24.04 LTS怎么关闭 Ubuntu Pro 更新提示弹窗?

《Ubuntu24.04LTS怎么关闭UbuntuPro更新提示弹窗?》Ubuntu每次开机都会弹窗提示安全更新,设置里最多只能取消自动下载,自动更新,但无法做到直接让自动更新的弹窗不出现,... 如果你正在使用 Ubuntu 24.04 LTS,可能会注意到——在使用「软件更新器」或运行 APT 命令时,

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系