多目标跟踪 | 近年论文及开源代码汇总(2008~2019)

2024-03-09 15:10

本文主要是介绍多目标跟踪 | 近年论文及开源代码汇总(2008~2019),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI算法与图像处理”,选择加"星标"或“置顶”

重磅干货,第一时间送达640?wx_fmt=jpeg

作者:ZihaoZhao

https://zhuanlan.zhihu.com/p/65177442

本文已由作者授权,未经允许,不得二次转载


把最近几年的MOT论文和开源代码按时间顺序整理了一下,对14年之后的论文整理的比较详细,14年之前的比较简略,希望对大家有帮助。

论文的Short Name前带✔的论文有代码,代码链接在论文链接之后。

这篇文章之后会持续更新最新的论文和代码。

另,MOT综述较少,Overview里也会列一些相关领域的综述。

Overview

Emami, P., Pardalos, P. M., Elefteriadou, L., & Ranka, S. (2018). Machine Learning Methods for Solving Assignment Problems in Multi-Target Tracking, 1(1), 1–35. Retrieved from arxiv.org/abs/1802.0689

Leal-Taixé, L., Milan, A., Schindler, K., Cremers, D., Reid, I., & Roth, S. (2017). Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tracking, (March). Retrieved from arxiv.org/abs/1704.0278

Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., Zhao, X., & Kim, T.-K. (2014). Multiple Object Tracking: A Literature Review, 1–18. Retrieved from arxiv.org/abs/1409.7618

Li, X., Hu, W., Shen, C., Zhang, Z., & Dick, A. (2013). A Survey of Appearance Models in Visual Object Tracking, 1–42.from arxiv.org/pdf/1303.4803

Poore, A. B., & Gadaleta, S. (2006). Some assignment problems arising from multiple target tracking, 43, 1074–1091. from doi.org/10.1016/j.mcm.2

Yilmaz, A., & Javed, O. (2006). Object Tracking : A Survey, 38(4). from doi.org/10.1145/1177352

2019

✔DeepMOT Xu, Y., Ban, Y., Alameda-Pineda, X., & Horaud, R. (2019). DeepMOT: A Differentiable Framework for Training Multiple Object Trackers, (i). Retrieved from DeepMOT: A Differentiable Framework for Training Multiple Object Tracker XU Yihong

✔FANTrack Baser, E., Balasubramanian, V., Bhattacharyya, P., & Czarnecki, K. (2019). FANTrack: 3D Multi-Object Tracking with Feature Association Network. Retrieved from FANTrack: 3D Multi-Object Tracking with Feature Association Network wise-lab / fantrack

FMA Zhang, J., Zhou, S., Wang, J., & Huang, D. (2019). Frame-wise Motion and Appearance for Real-time Multiple Object Tracking, (1). Retrieved from arxiv.org/abs/1905.0229

FAMNet Chu, P., & Ling, H. (2019). FAMNet: Joint Learning of Feature, Affinity and Multi-dimensional Assignment for Online Multiple Object Tracking. Retrieved from arxiv.org/abs/1904.0498

STRN Xu, J., Cao, Y., Zhang, Z., & Hu, H. (2019). Spatial-Temporal Relation Networks for Multi-Object Tracking. Retrieved from arxiv.org/abs/1904.1148

IATracker Chu, P., Fan, H., Tan, C. C., & Ling, H. (2019). Online Multi-Object Tracking with Instance-Aware Tracker and Dynamic Model Refreshment. Retrieved from arxiv.org/abs/1902.0823

LSST Feng, W., Hu, Z., Wu, W., Yan, J., & Ouyang, W. (2019). Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification. LSST Retrieved from arxiv.org/abs/1901.0612

✔NT Longyin Wen, Dawei Du, Shengkun Li, Xiao Bian, Siwei Lyu Learning Non-Uniform Hypergraph for Multi-Object Tracking, In AAAI 2019 from cs.albany.edu/~lsw/pape from github.com/longyin88081

✔MOTS Voigtlaender, P., Krause, M., Osep, A., Luiten, J., Sekar, B. B. G., Geiger, A., & Leibe, B. (2019). MOTS: Multi-Object Tracking and Segmentation. Retrieved from arxiv.org/abs/1902.0360 VisualComputingInstitute/TrackR-CNN

GM-PHD-N1F/T Baisa, N. L., & Wallace, A. (2019). Development of a N-type GM-PHD filter for multiple target, multiple type visual tracking. Journal of Visual Communication and Image Representation, 59, 257–271. Redirecting

MTDF Fu, Z., Angelini, F., Chambers, J., & Naqvi, S. M. (2019). Multi-Level Cooperative Fusion of GM-PHD Filters for Online Multiple Human Tracking. IEEE Transactions on Multimedia, (Dcm), 1–1. Multi-Level Cooperative Fusion of GM-PHD Filters for Online Multiple Human Tracking

FPSN Lee, S., & Kim, E. (2019). Multiple object tracking via feature pyramid siamese networks. IEEE Access, 7, 8181–8194. Multiple Object Tracking via Feature Pyramid Siamese Networks

2018

DeepCC Ristani, E., & Tomasi, C. (2018). Features for Multi-Target Multi-Camera Tracking and Re-Identification. from doi.org/10.1109/CVPR.20

SADF 48.3@17 Yoon, Y., Boragule, A., Song, Y., Yoon, K., & Jeon, M. (2018). Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. from doi.org/10.1109/AVSS.20

✔DAN(SST) Sun, S., Akhtar, N., Song, H., Mian, A., & Shah, M. (2018). Deep Affinity Network for Multiple Object Tracking, 13(9), 1–15. Retrieved from arxiv.org/abs/1810.1178 from github.com/shijieS/SST.

✔DMAN Zhu, J., Yang, H., Liu, N., Kim, M., Zhang, W., & Yang, M. H. (2018). Online Multi-Object Tracking with Dual Matching Attention Networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)11209 LNCS, 379–396. from doi.org/10.1007/978-3-0jizhu1023/DMAN_MOT

TNT(TrackletNet Tracker) Wang, G., Wang, Y., Zhang, H., Gu, R., & Hwang, J.-N. (2018). Exploit the Connectivity: Multi-Object Tracking with TrackletNet. Retrieved from arxiv.org/abs/1811.0725

CCC Keuper, M., Tang, S., Andres, B., Brox, T., & Schiele, B. (2018). Motion Segmentation & Multiple Object Tracking by Correlation Co-Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence8828(c), 1–13. from doi.org/10.1109/TPAMI.2

HAF Sheng, H., Zhang, Y., Chen, J., Xiong, Z., & Zhang, J. (2018). Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking. IEEE Transactions on Circuits and Systems for Video TechnologyXX(X). from doi.org/10.1109/TCSVT.2

TAT(Tracklet Association Tracker) Shen, H., Huang, L., Huang, C., & Xu, W. (2018). Tracklet Association Tracker: An End-to-End Learning-based Association Approach for Multi-Object Tracking. Retrieved from arxiv.org/abs/1808.0156

Henschel, R., Leal-Taixe, L., Cremers, D., & Rosenhahn, B. (2018). Fusion of head and full-body detectors for multi-object tracking. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops2018June, 1509–1518. from doi.org/10.1109/CVPRW.2

✔MOTBeyondPixels Sharma, S., Ansari, J. A., Murthy, J. K., & Krishna, K. M. (2018). Beyond Pixels: Leveraging Geometry and Shape Cues for Online Multi-Object Tracking. Retrieved from arxiv.org/abs/1802.0929 from github.com/JunaidCS032/

✔MOTDT Long Chen, Haizhou Ai, Zijie Zhuang, Chong Shang, Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-Identification, ICME 2018 from arxiv.org/abs/1809.0442 from github.com/longcw/MOTDT

✔DetTA Breuers, S., Beyer, L., Rafi, U., & Leibe, B. (2018). Detection-Tracking for Efficient Person Analysis: The DetTA Pipeline. Retrieved from arxiv.org/abs/1804.1013 from github.com/sbreuers/det

C-DRL Ren, L., Lu, J., Wang, Z., Tian, Q., & Zhou, J. (n.d.). Collaborative Deep Reinforcement Learning for Multi-Object Tracking, 1–17. from openaccess.thecvf.com/c

MHT-bLSTM Kim, C., Li, F., & Rehg, J. M. (n.d.). Multi-object Tracking with Neural Gating Using Bilinear LSTM. from openaccess.thecvf.com/c

THOPA-net Fabbri, M., Lanzi, F., Calderara, S., & Vezzani, R. (2018). Learning to Detect and Track Visible and Occluded Body Joints in a Virtual World, (April). from researchgate.net/public

RAN Fang, K., Xiang, Y., Li, X., & Savarese, S. (2018). Recurrent Autoregressive Networks for Online Multi-Object Tracking. WACV. from yuxng.github.io/fang_wa

Ma, C., Yang, C., Yang, F., Zhuang, Y., Zhang, Z., Jia, H., & Xie, X. (2018). Trajectory Factory: Tracklet Cleaving and Re-connection by Deep Siamese Bi-GRU for Multiple Object Tracking. Retrieved from arxiv.org/abs/1804.0455

Fernando, T., Denman, S., Sridharan, S., & Fookes, C. (2018). Tracking by Prediction: A Deep Generative Model for Mutli-Person localisation and Tracking. Retrieved from arxiv.org/abs/1803.0334

Maksai, A., & Fua, P. (2018). Eliminating Exposure Bias and Loss-Evaluation Mismatch in Multiple Object Tracking. Retrieved from Eliminating Exposure Bias and Loss-Evaluation Mismatch in Multiple Object Tracking

Wan, X., Wang, J., & Zhou, S. (2018). An online and flexible multi-object tracking framework using long short-term memory. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2018–June, 1311–1319. doi.org/10.1109/CVPRW.2

✔V-IOU Bochinski, E., Senst, T., & Sikora, T. (2018). Extending IOU Based Multi-Object Tracking by Visual Information. In 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (pp. 1–6). IEEE. Extending IOU Based Multi-Object Tracking by Visual Information github.com/bochinski/io

2017

DeepNetworkFlows Schulter, S., Vernaza, P., Choi, W., & Chandraker, M. (2017). Deep network flow for multi-object tracking. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 20172017Janua, 2730–2739. from doi.org/10.1109/CVPR.20

✔DeepSORT Wojke, N., Bewley, A., & Paulus, D. (2017). Simple Online and Realtime Tracking with a Deep Association Metric. Proceedings - International Conference on Image Processing, ICIP2017Septe, 3645–3649. from doi.org/10.1109/ICIP.20 from github.com/nwojke/deep_

EAMTT Tang, S., Andriluka, M., Andres, B., & Schiele, B. (2017). Multiple people tracking by lifted multicut and person re-identification. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 20172017Janua, 3701–3710. from doi.org/10.1109/CVPR.20

SOTforMOT He, Q., Wu, J., Yu, G., & Zhang, C. (2017). SOT for MOT. Retrieved from arxiv.org/abs/1712.0105

✔NMGC-MOT Maksai, A., Wang, X., Fleuret, F., & Fua, P. (2017). Non-Markovian Globally Consistent Multi-Object Tracking. Iccv 2017, 2544–2554. Retrieved from openaccess.thecvf.com/c from github.com/maksay/ptrac

STAM(spatial- temporal attention mechanism) Chu, Q., Ouyang, W., Li, H., Wang, X., Liu, B., & Yu, N. (2017). Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism. Proceedings of the IEEE International Conference on Computer Vision2017Octob, 4846–4855. from doi.org/10.1109/ICCV.20

Sadeghian, A., Alahi, A., & Savarese, S. (2017). Tracking the Untrackable: Learning to Track Multiple Cues with Long-Term Dependencies. Proceedings of the IEEE International Conference on Computer Vision2017Octob, 300–311. from doi.org/10.1109/ICCV.20

Quad-CNN Son, J., Baek, M., Cho, M., & Han, B. (2017). Multi-object tracking with quadruplet convolutional neural networks. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 20172017Janua, 3786–3795. from doi.org/10.1109/CVPR.20

✔IOUTracker Bochinski, E., Eiselein, V., & Sikora, T. (2017). High-Speed tracking-by-detection without using image information. 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2017, (August). from doi.org/10.1109/AVSS.20 from github.com/bochinski/io

✔RNN_LSTM Milan, A., Rezatofighi, S. H., Dick, A., Reid, I., & Schindler, K. (2017). Online Multi-Target Tracking Using Recurrent Neural Networks. AAAI 2017 from arxiv.org/abs/1604.0363 from bitbucket.org/amilan/rn

✔D2T Feichtenhofer, C., Pinz, A., & Zisserman, A. (2017). Detect to Track and Track to Detect. Proceedings of the IEEE International Conference on Computer Vision2017Octob, 3057–3065. from doi.org/10.1109/ICCV.20 from github.com/feichtenhofe

✔RCMSS Naiel, M. A., Ahmad, M. O., Swamy, M. N. S., Lim, J., & Yang, M. H. (2017). Online multi-object tracking via robust collaborative model and sample selection. Computer Vision and Image Understanding154, 94–107. from doi.org/10.1016/j.cviu. from users.encs.concordia.ca

✔towards-reid-tracking Beyer, L., Breuers, S., Kurin, V., & Leibe, B. (2017). Towards a Principled Integration of Multi-Camera Re-Identification and Tracking through Optimal Bayes Filters. Retrieved from arxiv.org/abs/1705.0460 from github.com/VisualComput

✔CIWT Aljoˇsa Oˇsep, Alexander Hermans Combined Image and World-Space Tracking in Traffic Scenes In ICRA 2017 from vision.rwth-aachen.de/m from github.com/aljosaosep/c

2016

MTMCT Ristani, E., Solera, F., Zou, R. S., Cucchiara, R., & Tomasi, C. (2016). Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)9914 LNCS(c), 17–35. from doi.org/10.1007/978-3-3

CPD(Changing Point Detection) Lee, B., Erdenee, E., Jin, S., & Rhee, P. K. (2016). Multi-Class Multi-Object Tracking using Changing Point Detection, (Mcmc). from doi.org/10.1007/978-3-3

POI Yu, F., Li, W., Li, Q., Liu, Y., Shi, X., & Yan, J. (2016). POI: Multiple Object Tracking with High Performance Detection and Appearance Feature. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)9914 LNCS, 36–42. from doi.org/10.1007/978-3-3

Social-LSTM Goel, K., Fei-Fei, L., Savarese, S., Alahi, A., Robicquet, A., & Ramanathan, V. (2016). Social LSTM: Human Trajectory Prediction in Crowded Spaces. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 961–971. from doi.org/10.1109/cvpr.20

MOT16 Milan, A., Leal-Taixe, L., Reid, I., Roth, S., & Schindler, K. (2016). MOT16: A Benchmark for Multi-Object Tracking, 1–12. Retrieved from arxiv.org/abs/1603.0083

✔SORT Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016). Simple online and realtime tracking. Proceedings - International Conference on Image Processing, ICIP2016Augus, 3464–3468. from doi.org/10.1109/ICIP.20 from github.com/abewley/sort

ArtTrack Insafutdinov, E., Andriluka, M., Pishchulin, L., Tang, S., Levinkov, E., Andres, B., & Schiele, B. (2016). ArtTrack: Articulated Multi-person Tracking in the Wild, 1–12. Retrieved from arxiv.org/abs/1612.0146

SiameseCNN Leal-Taixe, L., Canton-Ferrer, C., & Schindler, K. (2016). Learning by Tracking: Siamese CNN for Robust Target Association. In 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (pp. 418–425). IEEE. Learning by Tracking: Siamese CNN for Robust Target Association

2015

Fagot-bouquet, L., Audigier, R., Dhome, Y., & Multi-person, F. L. O. (2018). Online Multi-person Tracking Based on Global Sparse Collaborative Representations, 2015 IEEE International Conference on Image Processing (ICIP) from ieeexplore.ieee.org/doc

Behavior-CNN Rohrbach, A., Rohrbach, M., Hu, R., Darrell, T., & Schiele, B. (2015). Pedestrian Behavior Understanding and Prediction with Deep Neural Networks. 1511.03745V19905(c), 1–10. from doi.org/10.1007/978-3-3

MOT15 Leal-Taixé, L., Milan, A., Reid, I., Roth, S., & Schindler, K. (2015). MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking, 1–15. Retrieved from arxiv.org/abs/1504.0194

JPDArevisited Rezatofighi, S. H., Milan, A., Zhang, Z., Shi, Q., Dick, A., & Reid, I. (2015). Modified Joint Probabilistic Data Association. IEEE International Conference on Computer Vision (ICCV), (December), 6615–6620. from doi.org/10.1109/ICCV.20

ALFD Choi, W. (2015). Near-online multi-target tracking with aggregated local flow descriptor. Proceedings of the IEEE International Conference on Computer Vision2015 Inter, 3029–3037. from doi.org/10.1109/ICCV.20

✔MDP Xiang, Y., Alahi, A., & Savarese, S. (2015). Learning to Track: Online Multi-object Tracking by Decision Making. In 2015 IEEE International Conference on Computer Vision (ICCV) (pp. 4705–4713). IEEE. from doi.org/10.1109/ICCV.20 from cvgl.stanford.edu/proje

Fagot-Bouquet, L., Audigier, R., Dhome, Y., & Lerasle, F. (2015). Online multi-person tracking based on global sparse collaborative representations. In 2015 IEEE International Conference on Image Processing (ICIP) (pp. 2414–2418). IEEE. from doi.org/10.1109/ICIP.20

✔MHTrevisited Vinet, L., & Zhedanov, A. (2015). Multiple Hypothesis Tracking Revisited Chanho, 22(4), 625–638. from doi.org/10.1088/1751-81 from rehg.org/mht/

✔TMPORT Ristani, E., & Tomasi, C. (2015). Tracking multiple people online and in real time. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)9007, 444–459. from doi.org/10.1007/978-3-3 from vision.cs.duke.edu/Duke

✔LDCT Solera, F. (2015). Learning to Divide and Conquer for Online Multi-Target Tracking. 2015 IEEE International Conference on Computer Vision (ICCV), 4373–4381. from https://doi.org/10.1109/ICCV.2015.497 from <https://github.com/francescosolera/LDCT from imagelab.ing.unimore.it

✔headTracking Zhang, S., Wang, J., Wang, Z., Gong, Y., & Liu, Y. (2015). Multi-target tracking by learning local-to-global trajectory models. Pattern Recognition48(2), 580–590. from doi.org/10.1016/j.patco from github.com/gengshan-y/h

2014

✔CMOT Bae, S. H., & Yoon, K. J. (2014). Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1218–1225. from doi.org/10.1109/CVPR.20 from cvl.gist.ac.kr/project/

Tang, S., Andriluka, M., & Schiele, B. (2014). Detection and tracking of occluded people. International Journal of Computer Vision110(1), 58–69. from doi.org/10.1007/s11263-

✔H2T Wen, L., Li, W., Yan, J., Lei, Z., Yi, D., & Li, S. Z. (2014). Multiple target tracking based on undirected hierarchical relation hypergraph. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1282–1289. from doi.org/10.1109/CVPR.20 from cbsr.ia.ac.cn/users/lyw

Yang, B., & Nevatia, R. (2014). Multi-target tracking by online learning a CRF model of appearance and motion patterns. International Journal of Computer Vision107(2), 203–217. from doi.org/10.1007/s11263-

✔CEM Chari, V., Lacoste-Julien, S., Laptev, I., & Sivic, J. (2014). On Pairwise Costs for Network Flow Multi-Object Tracking. Retrieved from arxiv.org/abs/1408.3304 from milanton.de/contracking

✔OPCNF Chari, V., Lacoste-Julien, S., Laptev, I., & Sivic, J. (2014). Continuous Energy Minimization for Multi-Target Tracking, TPAMI 2014 from milanton.de/files/pami2 from di.ens.fr/willow/resear

✔Occlusion GeodesicsPossegger, H., Mauthner, T., Roth, P. M., & Bischof, H. (2014). Occlusion geodesics for online multi-object tracking. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1306–1313. Occlusion Geodesics for Online Multi-object Tracking lrs.icg.tugraz.at/downl

2013

Milan, A., Schindler, K., & Roth, S. (2013). Detection- and trajectory-level exclusion in multiple object tracking. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3682–3689. from doi.org/10.1109/CVPR.20

Salvi, D., Waggoner, J., Temlyakov, A., & Wang, S. (2013). A graph-based algorithm for multi-target tracking with occlusion. Proceedings of IEEE Workshop on Applications of Computer Vision, 489–496. from doi.org/10.1109/WACV.20

✔SMOT Dicle, C., Camps, O. I., & Sznaier, M. (2013). The way they move: Tracking multiple targets with similar appearance. Proceedings of the IEEE International Conference on Computer Vision, 2304–2311. from doi.org/10.1109/ICCV.20 from bitbucket.org/cdicle/sm

2012

Yan, X., Wu, X., Kakadiaris, I. A., & Shah, S. K. (2012). To Track or To Detect ? An Ensemble Framework for Optimal Selection, 594–607.from link.springer.com/conte

✔GMCP-Tracker Zamir, A. R., Dehghan, A., & Shah, M. (2012). GMCP-Tracker : Global Multi-object Tracking Using Generalized Minimum Clique Graphs, 343–356.from crcv.ucf.edu/papers/ecc from crcv.ucf.edu/projects/G

Hu, W., Li, X., Luo, W., Zhang, X., Maybank, S., & Zhang, Z. (2012). Single and multiple object tracking using log-euclidean riemannian subspace and block-division appearance model. IEEE Transactions on Pattern Analysis and Machine Intelligence34(12), 2420–2440. from doi.org/10.1109/TPAMI.2

Yang, B., & Nevatia, R. (2012). Online learned discriminative part-based appearance models for multi-human tracking. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)7572 LNCS(PART 1), 484–498. from doi.org/10.1007/978-3-6

Shu, G., Dehghan, A., Oreifej, O., Hand, E., & Shah, M. (2012). Part-based multiple-person tracking with partial occlusion handling. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1815–1821. from doi.org/10.1109/CVPR.20

✔OMPTTH Zhang, J., Lo Presti, L., & Sclaroff, S. (2012). Online multi-person tracking by tracker hierarchy. Proceedings - 2012 IEEE 9th International Conference on Advanced Video and Signal-Based Surveillance, AVSS 2012, 379–385. from doi.org/10.1109/AVSS.20 from cs-people.bu.edu/jmzhan

GM-PHD Eiselein, V., Arp, D., Pätzold, M., & Sikora, T. (2012). Real-time multi-human tracking using a probability hypothesis density filter and multiple detectors. Proceedings - 2012 IEEE 9th International Conference on Advanced Video and Signal-Based Surveillance, AVSS 2012, (3), 325–330. Real-Time Multi-human Tracking Using a Probability Hypothesis Density Filter and Multiple Detectors

2011

Andriyenko, A., Roth, S., & Schindler, K. (2011). An analytical formulation of global occlusion reasoning for multi-target tracking. Proceedings of the IEEE International Conference on Computer Vision, (November), 1839–1846. from doi.org/10.1109/ICCVW.2

Andriyenko, A., & Schindler, K. (2011). Multi-target tracking by continuous energy minimization. In CVPR 2011 (pp. 1265–1272). IEEE. from doi.org/10.1109/CVPR.20

Pirsiavash, H., Ramanan, D., & Fowlkes, C. (2011). Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects. Cvpr.from baidu.com/link?

✔KSP Berclaz. (2011). Multiple Object Tracking using K-shortes Paths. PAMI Preprint, 1–14. from cvlab.epfl.ch/files/con from cvlab.epfl.ch/software/

2010

Mitzel, D., Horbert, E., Ess, A., & Leibe, B. (2010). Multi-person tracking with sparse detection and continuous segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)6311 LNCS(PART 1), 397–410. from doi.org/10.1007/978-3-6

MTDF Pedro F. Felzenszwalb, Ross B. Girshick, D. M. and D. R. (2010). Object detection with discriminatively trained part-based models. in TPAMI 2010. doi.org/10.1109/MC.2014

2009

Hu, M., Ali, S., & Shah, M. (2009). Detecting global motion patterns in complex videos, 1–5. from doi.org/10.1109/icpr.20

Breitenstein, M. D., Reichlin, F., Leibe, B., Koller-Meier, E., & Van Gool, L. (2009). Robust tracking-by-detection using a detector confidence particle filter. Proceedings of the IEEE International Conference on Computer Vision, (Iccv), 1515–1522. from doi.org/10.1109/ICCV.20

2008

M. IsardM. Isard, & J. M. (2008). B. A. B. M.-B. T. (application/pdf オブジェクト). R. from users.dickinson.edu/~jm ., & J. MacCormick. (2008). BraMBLe: A Bayesian Multiple-Blob Tracker (application/pdf オブジェクト). Retrieved from users.dickinson.edu/~jm

Zhang, L., Li, Y., & Nevatia, R. (2008). Global data association for multi-object tracking using network flows. 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR. from doi.org/10.1109/CVPR.20

还有一些对多目标跟踪的论文总结也很棒,推荐给大家。

https://github.com/SpyderXu/multi-object-tracking-paper-list

https://github.com/huanglianghua/mot-papers/blob/master/README.md

640?wx_fmt=jpeg

好文推荐:

  • 《》

  • 《》

  • 《》

640?wx_fmt=jpeg

加群交流

扫码添加助手,可申请加入AI_study交流群。一定要备注:研究方向+地点+学校/公司+昵称(如目标检测+上海+上交+卡卡西),不根据格式申请,一律不通过。

【目前已有众多知名高校学生和从业者在群里面学习成长,期待你的加入】

640?wx_fmt=jpeg

最新 AI 干货,我在看❤️

这篇关于多目标跟踪 | 近年论文及开源代码汇总(2008~2019)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/791057

相关文章

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

MySQL基本表查询操作汇总之单表查询+多表操作大全

《MySQL基本表查询操作汇总之单表查询+多表操作大全》本文全面介绍了MySQL单表查询与多表操作的关键技术,包括基本语法、高级查询、表别名使用、多表连接及子查询等,并提供了丰富的实例,感兴趣的朋友跟... 目录一、单表查询整合(一)通用模版展示(二)举例说明(三)注意事项(四)Mapper简单举例简单查询

交换机救命命令手册! 思科交换机排障命令汇总指南

《交换机救命命令手册!思科交换机排障命令汇总指南》在交换机配置与故障排查过程中,总会遇到那些“关键时刻靠得住的命令”,今天我们就来分享一份思科双实战命令手册... 目录1. 基础系统诊断2. 接口与链路诊断3. L2切换排障4. L3路由与转发5. 高级调试与日志6. 性能与QoS7. 安全与DHCP8.

故障定位快人一步! 华为交换机排障命令汇总

《故障定位快人一步!华为交换机排障命令汇总》在使用华为交换机进行故障排查时,首先需要了解交换机的当前状态,通过执行基础命令,可以迅速获取到交换机的系统信息、接口状态以及配置情况等关键数据,为后续的故... 目录基础系统诊断接口与链路诊断L2切换排障L3路由与转发高级调试与日志性能、安全与扩展IT人无数次实战

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python38个游戏开发库整理汇总

《Python38个游戏开发库整理汇总》文章介绍了多种Python游戏开发库,涵盖2D/3D游戏开发、多人游戏框架及视觉小说引擎,适合不同需求的开发者入门,强调跨平台支持与易用性,并鼓励读者交流反馈以... 目录PyGameCocos2dPySoyPyOgrepygletPanda3DBlenderFife

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

linux重启命令有哪些? 7个实用的Linux系统重启命令汇总

《linux重启命令有哪些?7个实用的Linux系统重启命令汇总》Linux系统提供了多种重启命令,常用的包括shutdown-r、reboot、init6等,不同命令适用于不同场景,本文将详细... 在管理和维护 linux 服务器时,完成系统更新、故障排查或日常维护后,重启系统往往是必不可少的步骤。本文

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流