【数字人】12、DINet | 使用形变+修复模块实现高清 talking head 生成(AAAI2023)

本文主要是介绍【数字人】12、DINet | 使用形变+修复模块实现高清 talking head 生成(AAAI2023),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

文章目录

    • 一、背景
    • 二、方法
      • 2.1 deformation part
      • 2.2 inpainting part
      • 2.3 Loss 函数
    • 三、效果
      • 3.1 数据集
      • 3.2 实现细节
      • 3.3 可视化效果

论文:DINet: Deformation Inpainting Network for Realistic Face Visually Dubbing on High Resolution Video

代码:https://github.com/MRzzm/DINet

出处:AAAI2023

贡献:

  • 提出了能产生高分辨率视频的方法,能够同时产生准确的嘴型且保留纹理细节
  • 本文方法是【形变模块】+【修复模块】组成的,在参考帧的基础上对嘴型进行形变从而产生新的口型结果,而非直接生成

一、背景

在这里插入图片描述

本文针对 few-shot learning,提出了一种 Deformation Inpainting Network (DINet)

DINet 和之前的方法最大的不同在于:

  • 之前的方法主要依赖于多个上采样层来直接从隐空间来生成最终的像素结果
  • DINet 在 referece image 的特征图上使用了 spatial deformation,能够保留更多的高频纹理细节

DINet 的组成:

  • 一个 deformation 模块:嘴部形变模块,为了避免生成的结果产生模糊,本文是会对嘴部区域附近的特征图进行空间形变,用于产生音频同步的嘴型
    • 首先会自适应的选取 5 个参考帧(面部图片)
    • 然后使用 spatial deformation 来为这些参考帧的人脸的特征图进行形变,生成形变后的特征图,目标是为了让【嘴部】和输入的【音频+头部姿态】保持对齐
  • 一个 inpainting 模块:也就是一个解码器,能够将形变后的嘴部特征和上半脸+头部姿态合并起来,输出自然的生成结果
    • 通过卷积层融合源人脸特征和变形结果,修复嘴部区域像素

二、方法

在这里插入图片描述

本文提出的 DINet 的结构如图 2 所示,主要由变形模块( P D P^D PD)和修复模块 ( P I P^I PI)组成,前者是在空间上对参考帧的特征图进行形变,后者是利用变形后的结果来修复源人脸中的嘴部区域

2.1 deformation part

如图 2 的上半部分就是变形模块( P D P^D PD):

  • 给定源图片 source image I s ∈ R 3 × H × W I_s \in R{3 \times H \times W} IsR3×H×W
  • 给定驱动声音 A d ∈ R T × 29 A_d \in R^{T \times 29} AdRT×29
  • 给定 5 张参考图片 reference image I r e f ∈ R 15 × H × W I_{ref} \in R{15 \times H \times W} IrefR15×H×W

变形模块的主要目标是生成形变特征 F d ∈ R 256 × H / 4 × W / 4 F_d \in R{256 \times H/4 \times W/4} FdR256×H/4×W/4,并且这个特征是要和驱动音频 A d A_d Ad 同步的嘴型,并和 source 图片 I s I_s Is 对齐头部姿态

  • 首先,将音频特征输入 audio encoder 得到 audio feature F a u d i o F_{audio} Faudio
  • 然后,将 source image I s I_s Is 和 reference image I r e f I_{ref} Iref 输入两个不同的 encoder 网络来分别生成对应的特征 F s ∈ R 256 × H / 4 × W / 4 F_s \in R^{256 \times H/4 \times W/4} FsR256×H/4×W/4 F r e f ∈ R 256 × H / 4 × W / 4 F_{ref} \in R^{256 \times H/4 \times W/4} FrefR256×H/4×W/4
  • 接着,将 F s ∈ R 256 × H / 4 × W / 4 F_s \in R^{256 \times H/4 \times W/4} FsR256×H/4×W/4 F r e f ∈ R 256 × H / 4 × W / 4 F_{ref} \in R^{256 \times H/4 \times W/4} FrefR256×H/4×W/4 进行 concat 后输入一个 alignment encoder 来得到对齐后的特征 F a l i g n ∈ R 128 F_{align} \in R^{128} FalignR128 F a l i g n ∈ R 128 F_{align} \in R^{128} FalignR128 的作用是对 I s I_s Is I r e f I_{ref} Iref 的 head pose 进行对齐
  • 最后,使用 F a u d i o F_{audio} Faudio F a l i g n F_{align} Falign 被用于将 F r e f F_{ref} Fref 形变为 F d F_d Fd

如何进行形变呢:

  • 本文使用了 AdaAT 的方法来进行形变(没有使用密集flow的方法),主要的原因是相比于 flow,AdaAT 能够通过对特征通道进行特定变形来变形特征图
  • AdaAT 会在不同的特征通道上计算不同的仿射系数
  • 在此处 P D P^D PD 使用全连接层来计算旋转、平移、缩放系数,然后使用这些仿射系数对 F r e f F_{ref} Fref 进行仿射变换

在这里插入图片描述

2.2 inpainting part

图 2 的黄色矩形就是 inpainting part P I P^I PI 的结构,这个模块的目标就是使用 source image 的特征图 F s F_s Fs 和形变后的 ref 特征图 F d F_d Fd 来合成最终的说话图片 I o ∈ 3 × H × W I_o \in 3 \times H \times W Io3×H×W

  • 首先,将 F d F_d Fd F s F_s Fs 进行 concat
  • 然后,使用一个 decoder(卷积层)来修复 source image 被 mask 掉的嘴部区域,并且生成 I o I_o Io

2.3 Loss 函数

作者在训练过程中使用了 3 个 loss 函数

  • perception loss
  • GAN loss
  • lip-sync loss

1、perception loss

作者使用两个尺度上的图片来计算感知损失,作者将生成的图像和原始的图像送入 VGG-19 得到特征后计算一次 loss,下采样 2 倍后送入 VGG-19 得到特征后再计算一次 loss,两个 loss 求均值:

在这里插入图片描述

2、GAN loss

作者使用 LS-GAN loss

在这里插入图片描述

3、Lip-sync loss

作者使用这个 loss 是为了提升生成的嘴型同步性,作者使用 audio spectrogram with deepspeech 特征重新训练了 syncnet

在这里插入图片描述

4、整体 loss

在这里插入图片描述

三、效果

3.1 数据集

作者使用 HDTF 和 MEAD 数据集

  • HDTF:约 430 个视频,分辨率为 720P 或 1080P,随机选择 20 个视频作为测试
  • MEAD:收集了约 1920 个正常表情的前视方向的视频作为训练数据,选择了 240 个视频(6个人)作为测试

3.2 实现细节

数据处理:

  • 视频首先会 resample 到 25fps
  • 使用 openface 提取到 68 个人脸关键点,然后 crop 出面部区域,将所有 crop 的面部区域 resize 到 416x320,其中嘴部区域会占 256x256
  • 使用 deepspeech 提取语音特征

训练阶段:

  • DINet 输入一个 source frame,分辨率为 3x416x320,再输入一个 driving audio,维度为 5x29,还有 5 帧 reference image,分辨率为 15416x320
  • syncnet 输入 5 帧 mouth image(256x256) 和对应的 deepspeech 特征
  • 优化器:Adam,学习率 0.0001
  • batch: DINet 是 3,syncnet 是 20

3.3 可视化效果

在这里插入图片描述

在这里插入图片描述

这篇关于【数字人】12、DINet | 使用形变+修复模块实现高清 talking head 生成(AAAI2023)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/790739

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传