【Python】科研代码学习:三 PreTrainedModel, PretrainedConfig, PreTrainedTokenizer

本文主要是介绍【Python】科研代码学习:三 PreTrainedModel, PretrainedConfig, PreTrainedTokenizer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【Python】科研代码学习:三 PreTrainedModel, PretrainedConfig, PreTrainedTokenizer

  • 前言
  • Models : PreTrainedModel
    • PreTrainedModel 中重要的方法
  • tensorflow & pytorch 简单对比
  • Configuration : PretrainedConfig
    • PretrainedConfig 中重要的方法
  • Tokenizer : PreTrainedTokenizer
    • PreTrainedTokenizer 中重要的方法

前言

  • HF 官网API
    本文主要从官网API与源代码中学习调用HF的关键模组

Models : PreTrainedModel

  • HF 提供的基础模型类有 PreTrainedModel, TFPreTrainedModel, and FlaxPreTrainedModel
  • 这三者有什么区别呢
    PreTrainedModel 指的是用 torch 的框架
    在这里插入图片描述
    TFPreTrainedModel 指的是用 tensorflow 框架
    在这里插入图片描述
    FlaxPreTrainedModel 指的是用 flax 框架,是用 jax 做的
    在这里插入图片描述
    (哈哈,搜了好久都没搜到,去看源码导包瞬间明白了,也可能是我比较笨)
  • Transformers的大部分模型都会继承PretrainedModel基类。PretrainedModel主要负责管理模型的配置,模型的参数加载、下载和保存。
  • PretrainedModel继承自 nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin, PeftAdapterMixin
    在初始化时需要提供给它一个 config: PretrainedConfig
  • 所以,我们可以视为它是所有模型的基类
    可以看到很多其他代码在判断模型类型时,一般写 model: Union[PreTrainedModel, nn.Module]

PreTrainedModel 中重要的方法

  • push_to_hub:将模型传到HF hub
from transformers import AutoModelmodel = AutoModel.from_pretrained("google-bert/bert-base-cased")# Push the model to your namespace with the name "my-finetuned-bert".
model.push_to_hub("my-finetuned-bert")# Push the model to an organization with the name "my-finetuned-bert".
model.push_to_hub("huggingface/my-finetuned-bert")
  • from_pretrained:根据config实例化预训练pytorch模型(Instantiate a pretrained pytorch model from a pre-trained model configuration.)
    默认使用评估模式 .eval()
    可以打开训练模式 .train()

    看下面的例子,可以从官方加载,也可以从本地模型参数加载。如果本地参数是tf的,转pytorch需要设置 from_tf=True,并且会慢些;本地参数是flax的话类似同理。
from transformers import BertConfig, BertModel# Download model and configuration from huggingface.co and cache.
model = BertModel.from_pretrained("google-bert/bert-base-uncased")
# Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
model = BertModel.from_pretrained("./test/saved_model/")
# Update configuration during loading.
model = BertModel.from_pretrained("google-bert/bert-base-uncased", output_attentions=True)
assert model.config.output_attentions == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
# Loading from a Flax checkpoint file instead of a PyTorch model (slower)
model = BertModel.from_pretrained("google-bert/bert-base-uncased", from_flax=True)

可以给 torch_dtype 设置数据类型。若不给,则默认为 torch.float16。也可以给 torch_dtype="auto"

  • get_input_embeddings:获得输入的词嵌入在这里插入图片描述
    对应还有 get_output_embeddings
  • init_weights:设置参数初始化
    如果需要自己调整参数初始化的,在 _init_weights_initialize_weights 中设置
  • save_pretrained:把模型和配置参数保存在文件夹中
    保存完后,便可以通过 from_pretrained 再次加载模型了
    在这里插入图片描述

tensorflow & pytorch 简单对比

  • 知乎:Tensorflow 到底比 Pytorch 好在哪里?
    下面截取了比较重要的图
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 里面还提到了一个内容叫做 Keras

Keras是一个由Python编写的开源人工神经网络库,可以作为Tensorflow、Microsoft-CNTK和Theano的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化

Configuration : PretrainedConfig

  • 刚才看了,对于 PretrainedModel 初始化提供的参数是 PretrainedConfig 类型的参数。
    它主要为不同的任务,提供了不同的重要参数
    HF官网:PretrainedConfig
  • 列一下对于NLP中比较重要的参数吧,所有的就看官方文档吧
返回信息
output_hidden_states (bool, optional, defaults to False) — Whether or not the model should return all hidden-states.
output_attentions (bool, optional, defaults to False) — Whether or not the model should returns all attentions.
return_dict (bool, optional, defaults to True) — Whether or not the model should return a ModelOutput instead of a plain tuple.
output_scores (bool, optional, defaults to False) — Whether the model should return the logits when used for generation.
return_dict_in_generate (bool, optional, defaults to False) — Whether the model should return a ModelOutput instead of a torch.LongTensor.序列生成
max_length (int, optional, defaults to 20) — Maximum length that will be used by default in the generate method of the model.
min_length (int, optional, defaults to 0) — Minimum length that will be used by default in the generate method of the model.
do_sample (bool, optional, defaults to False) — Flag that will be used by default in the generate method of the model. Whether or not to use sampling ; use greedy decoding otherwise.
num_beams (int, optional, defaults to 1) — Number of beams for beam search that will be used by default in the generate method of the model. 1 means no beam search.
diversity_penalty (float, optional, defaults to 0.0) — Value to control diversity for group beam search. that will be used by default in the generate method of the model. 0 means no diversity penalty. The higher the penalty, the more diverse are the outputs.
temperature (float, optional, defaults to 1.0) — The value used to module the next token probabilities that will be used by default in the generate method of the model. Must be strictly positive.
top_k (int, optional, defaults to 50) — Number of highest probability vocabulary tokens to keep for top-k-filtering that will be used by default in the generate method of the model.
top_p (float, optional, defaults to 1) — Value that will be used by default in the generate method of the model for top_p. If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.
epetition_penalty (float, optional, defaults to 1) — Parameter for repetition penalty that will be used by default in the generate method of the model. 1.0 means no penalty.
length_penalty (float, optional, defaults to 1) — Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log likelihood of the sequence (i.e. negative), length_penalty > 0.0 promotes longer sequences, while length_penalty < 0.0 encourages shorter sequences.
bad_words_ids (List[int], optional) — List of token ids that are not allowed to be generated that will be used by default in the generate method of the model. In order to get the tokens of the words that should not appear in the generated text, use tokenizer.encode(bad_word, add_prefix_space=True).tokenizer相关
bos_token_id (int, optional) — The id of the beginning-of-stream token.
pad_token_id (int, optional) — The id of the padding token.
eos_token_id (int, optional) — The id of the end-of-stream token.PyTorch相关
torch_dtype (str, optional) — The dtype of the weights. This attribute can be used to initialize the model to a non-default dtype (which is normally float32) and thus allow for optimal storage allocation. For example, if the saved model is float16, ideally we want to load it back using the minimal amount of memory needed to load float16 weights. Since the config object is stored in plain text, this attribute contains just the floating type string without the torch. prefix. For example, for torch.float16 `torch_dtype is the "float16" string.常见参数
vocab_size (int) — The number of tokens in the vocabulary, which is also the first dimension of the embeddings matrix (this attribute may be missing for models that don’t have a text modality like ViT).
hidden_size (int) — The hidden size of the model.
num_attention_heads (int) — The number of attention heads used in the multi-head attention layers of the model.
num_hidden_layers (int) — The number of blocks in the model.

PretrainedConfig 中重要的方法

  • push_to_hub:依然是上传到 HF hub
  • from_dict:把一个 dict 类型转到 PretrainedConfig 类型
  • from_json_file:把一个 json 文件转到 PretrainedConfig 类型,传入的是文件路径
  • to_dict:转成 dict 类型
  • to_json_file:保存到 json 文件
  • to_json_string:转成 json 字符串
  • from_pretrained:从预训练模型配置文件中直接获取配置
    可以是HF模型,也可以是本地模型,见下方例子
# We can't instantiate directly the base class *PretrainedConfig* so let's show the examples on a
# derived class: BertConfig
config = BertConfig.from_pretrained("google-bert/bert-base-uncased"
)  # Download configuration from huggingface.co and cache.
config = BertConfig.from_pretrained("./test/saved_model/"
)  # E.g. config (or model) was saved using *save_pretrained('./test/saved_model/')*
config = BertConfig.from_pretrained("./test/saved_model/my_configuration.json")
config = BertConfig.from_pretrained("google-bert/bert-base-uncased", output_attentions=True, foo=False)
assert config.output_attentions == True
config, unused_kwargs = BertConfig.from_pretrained("google-bert/bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True
)
assert config.output_attentions == True
assert unused_kwargs == {"foo": False}
  • save_pretrained:把配置文件保存到文件夹中,方便下次 from_pretrained 直接读取

Tokenizer : PreTrainedTokenizer

  • HF官网:PreTrainedTokenizer
    Tokenizer 是用来把输入的字符串,转成 id 数组用的
    先来看一下其中相关的类的继承关系
    在这里插入图片描述
  • PreTrainedTokenizer 的初始化方法是直接给了 **kwargs
    调几个重要的列在下面,可以看到大部分都是设置一些token的含义。
bos_token (str or tokenizers.AddedToken, optional) — A special token representing the beginning of a sentence. Will be associated to self.bos_token and self.bos_token_id.
eos_token (str or tokenizers.AddedToken, optional) — A special token representing the end of a sentence. Will be associated to self.eos_token and self.eos_token_id.
unk_token (str or tokenizers.AddedToken, optional) — A special token representing an out-of-vocabulary token. Will be associated to self.unk_token and self.unk_token_id.
sep_token (str or tokenizers.AddedToken, optional) — A special token separating two different sentences in the same input (used by BERT for instance). Will be associated to self.sep_token and self.sep_token_id.
pad_token (str or tokenizers.AddedToken, optional) — A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. Will be associated to self.pad_token and self.pad_token_id.
cls_token (str or tokenizers.AddedToken, optional) — A special token representing the class of the input (used by BERT for instance). Will be associated to self.cls_token and self.cls_token_id.
mask_token (str or tokenizers.AddedToken, optional) — A special token representing a masked token (used by masked-language modeling pretraining objectives, like BERT). Will be associated to self.mask_token and self.mask_token_id.

PreTrainedTokenizer 中重要的方法

  • add_tokens:添加一些新的token
    它强调了,添加新token需要确保 token 嵌入矩阵与tokenizer是匹配的,即多调用一下 resize_token_embeddings 方法
    在这里插入图片描述
# Let's see how to increase the vocabulary of Bert model and tokenizer
tokenizer = BertTokenizerFast.from_pretrained("google-bert/bert-base-uncased")
model = BertModel.from_pretrained("google-bert/bert-base-uncased")num_added_toks = tokenizer.add_tokens(["new_tok1", "my_new-tok2"])
print("We have added", num_added_toks, "tokens")
# Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer.
model.resize_token_embeddings(len(tokenizer))
  • add_special_tokens:添加特殊tokens,比如之前的 eos,pad 等,与之前普通的tokens是不大一样的,但要确保该token不在词汇表里
# Let's see how to add a new classification token to GPT-2
tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
model = GPT2Model.from_pretrained("openai-community/gpt2")special_tokens_dict = {"cls_token": "<CLS>"}num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
print("We have added", num_added_toks, "tokens")
# Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer.
model.resize_token_embeddings(len(tokenizer))assert tokenizer.cls_token == "<CLS>"
  • encode, decode:字符串转id数组,id数组转字符串,即词嵌入
    encodeself.convert_tokens_to_ids(self.tokenize(text)) 等价
    decodeself.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids)) 等价
  • tokenize:把字符串转成token序列,即分词 str → list[str]

这篇关于【Python】科研代码学习:三 PreTrainedModel, PretrainedConfig, PreTrainedTokenizer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/789128

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意