mmlspark.lightgbm.LightGBMClassifier参数明

2024-03-09 00:04

本文主要是介绍mmlspark.lightgbm.LightGBMClassifier参数明,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

mmlspark.lightgbm.LightGBMClassifier 是一个用于二元分类和多类分类的机器学习模型,它是基于 Microsoft ML for Apache Spark (MMLSpark) 库的。这个类是为了在Spark环境中使用LightGBM实现,提供了大量的参数用于调整模型。下面是一些主要参数的详细中文描述:

  • baggingFraction (float): Bagging的比例,用于控制每次迭代时数据的采样比例。

  • baggingFreq (int): Bagging的频率,表示每几次迭代执行一次bagging。

  • baggingSeed (int): Bagging的随机种子。

  • binSampleCount (int): 在计算直方图bins时考虑的样本数量。

  • boostFromAverage (bool): 是否将初始分数调整为标签的平均值以加快收敛速度。

  • boostingType (object): Boosting类型,默认为gbdt(梯度提升决策树)。可选项包括gbdtgbrtrf(随机森林)、dart(Dropouts meet Multiple Additive Regression Trees)、goss(基于梯度的单边采样)等。

  • categoricalSlotIndexes (list): 分类列的索引列表,即特征列中的槽位索引。

  • categoricalSlotNames (list): 分类列槽位名称的列表,即特征列中的槽位名称。

  • chunkSize (int): 用于指定将Java数据复制到原生时的块大小。如果设置过高,可能会浪费内存;如果设置过低,可能会降低数据复制的性能。

  • earlyStoppingRound (int): 早停轮数,如果一定数量的迭代中,评估指标没有改善,则停止训练。

  • featureFraction (float): 特征采样比例,用于每次迭代时随机选择部分特征进行训练,以减少过拟合。

  • featuresCol (object): 特征列名称。

  • learningRate (float): 学习率或收缩率。

  • maxDepth (int): 树的最大深度。

  • minDataInLeaf (int): 一个叶子节点上的最小数据数量,可以用来处理过拟合。

  • numIterations (int): 迭代次数,LightGBM会构建num_class * num_iterations棵树。

  • numLeaves (int): 叶子的数量,过多会增加模型复杂度,可能导致过拟合。

  • objective (object): 目标函数,对于回归问题可以是regression_l2regression_l1等,对于分类问题可以是binarymulticlass等。

  • predictionCol (object): 预测结果的列名。

  • probabilityCol (object): 预测概率的列名,注意,并非所有模型都输出校准良好的概率估计。

  • rawPredictionCol (object): 原始预测(即置信度)的列名。
    当然,接着前面的介绍,这里补充其他一些关键参数的详细描述:

  • lambdaL1 (float): L1正则化项,用于控制模型的复杂度,防止过拟合。

  • lambdaL2 (float): L2正则化项,同样用于控制模型的复杂度,防止过拟合。

  • leafPredictionCol (object): 预测叶节点索引的列名。

  • matrixType (object): 指定构建的原生LightGBM矩阵是稀疏还是密集的,选项包括auto(自动),sparse(稀疏)或dense(密集)。默认值是auto,会根据前十行数据来决定类型。

  • maxBin (int): 最大的bin数量,用于特征分割。

  • maxBinByFeature (list): 每个特征的最大bin数量。

  • maxDeltaStep (float): 用于限制树叶输出的最大值。

  • maxDrop (int): 在一次boosting迭代中丢弃的最大树的数量。

  • metric (object): 在评估数据上要评估的指标。

  • minGainToSplit (float): 执行分割的最小增益。

  • minSumHessianInLeaf (float): 一个叶子节点上的最小Hessian之和。

  • modelString (object): 用于再训练的LightGBM模型字符串。

  • negBaggingFraction (float): 负Bagging比例。

  • numBatches (int): 如果大于0,在训练时将数据分成几个批次。

  • parallelism (object): 树学习的并行模式,可以设置为data_parallelvoting_parallel

  • posBaggingFraction (float): 正Bagging比例。

  • repartitionByGroupingColumn (bool): 按分组列重新分配训练数据,默认开启。

  • skipDrop (float): 在boosting迭代中跳过dropout过程的概率。

  • slotNames (list): 特征列中槽位的名称列表。

  • thresholds (list): 在多类分类中调整预测每个类的概率的阈值。数组长度必须等于类的数量,值必须大于0,但最多有一个值可以是0。

  • timeout (float): 超时时间,以秒为单位。

  • topK (int): 在Voting parallel中使用的top_k值,设置更大的值可以得到更准确的结果,但会减慢训练速度。必须大于0。

  • uniformDrop (bool): 在dart模式中设置为true以使用均匀drop。

  • useBarrierExecutionMode (bool): 使用屏障执行模式,该模式使用屏障阶段,默认关闭。

  • useSingleDatasetMode (bool): 使用单数据集执行模式来创建每个执行器上的单个原生数据集(单例),以减少内存和通信开销。注意在本地模式运行spark时此功能被禁用。

  • validationIndicatorCol (object): 指示该行是用于训练还是验证的。

  • verbosity (int): 详细程度,小于0是Fatal,等于0是Error,等于1是Info,大于1是Debug。

  • weightCol (object): 权重列的名称。

  • xgboostDartMode (bool): 设置为true以使用xgboost的dart模式。

这些参数为用户提供了广泛的灵活性来定制和优化模型,以适应不同的数据特征和业务需求。
这些参数允许用户根据具体的数据集和任务需求调整模型的行为,以达到最佳的模型性能。

这篇关于mmlspark.lightgbm.LightGBMClassifier参数明的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/788861

相关文章

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

如何确定 Go 语言中 HTTP 连接池的最佳参数?

确定 Go 语言中 HTTP 连接池的最佳参数可以通过以下几种方式: 一、分析应用场景和需求 并发请求量: 确定应用程序在特定时间段内可能同时发起的 HTTP 请求数量。如果并发请求量很高,需要设置较大的连接池参数以满足需求。例如,对于一个高并发的 Web 服务,可能同时有数百个请求在处理,此时需要较大的连接池大小。可以通过压力测试工具模拟高并发场景,观察系统在不同并发请求下的性能表现,从而

多路转接之select(fd_set介绍,参数详细介绍),实现非阻塞式网络通信

目录 多路转接之select 引入 介绍 fd_set 函数原型 nfds readfds / writefds / exceptfds readfds  总结  fd_set操作接口  timeout timevalue 结构体 传入值 返回值 代码 注意点 -- 调用函数 select的参数填充  获取新连接 注意点 -- 通信时的调用函数 添加新fd到

struts2中的json返回指定的多个参数

要返回指定的多个参数,就必须在struts.xml中的配置如下: <action name="goodsType_*" class="goodsTypeAction" method="{1}"> <!-- 查询商品类别信息==分页 --> <result type="json" name="goodsType_findPgae"> <!--在这一行进行指定,其中lis是一个List集合,但

mybatis if test 之 0当做参数传入出问题

首先前端传入了参数 if(StringUtils.isNotBlank(status)){requestParam.setProperty("status", Integer.parseInt(status));}List<SuperPojo> applicationList = groupDao.getApplicationListByReviewStatusAndMember(req

Linux的系统性能监测参数获取方法介绍

目前的工程需要简单的监测一下Linux系统的:CPU负载、内存消耗情况、几个指定目录的磁盘空间、磁盘I/O、swap的情况还有就是网络流量。   Linux下的性能检测工具其实都有很多。   mrtg(http://people.ee.ethz.ch/~oetiker/webtools/mrtg/)就是一个很不错的选择。不过用mrtg就要装sysstat、apache、snmp、pe