【Diffusers库】第二篇 快速生成图片

2024-03-08 18:28

本文主要是介绍【Diffusers库】第二篇 快速生成图片,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 写在前面的话
  • 提速的几个条件
    • 1. 硬件
    • 2. 精度
    • 3. 推理步数
    • 3. 内存
    • 4. 管道组件
  • 提质的几个条件
    • 1. 模型
    • 2. prompt

写在前面的话

  这是我们研发的用于 消费决策的AI助理 ,我们会持续优化,欢迎体验与反馈。微信扫描二维码,添加即可。
  官方链接:https://ailab.smzdm.com/

************************************************************** 分割线 *******************************************************************

  随着AI技术的发展,模型参数量越来越大,运行效率成了一个问题。在AIGC方面同样有这样的问题 ,本篇文章介绍一些方法,用于提升图像生成的效率。 本篇是以文生图为例子的,图生图同样适用!
  这篇文章的 搬运性质 多一些!哈哈~ 没有梯子的话,就老老实实在这里看吧!

提速的几个条件

  闲话不说,先实例化模型,使用的模型是"runwayml/stable-diffusion-v1-5",这个模型可能要5个G左右。下载起来确实很费事。

from diffusers import DiffusionPipeline
# 实例化对象
model_id = "runwayml/stable-diffusion-v1-5"
pipeline = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True)

  本教程将使用的提示词是 “portrait photo of a old warrior chief”,但是你可以随心所欲的想象和构造自己的提示词:

prompt = "portrait photo of a old warrior chief"

1. 硬件

  加速推理的最简单方法之一是将 pipeline 放在 GPU 上 ,就像使用任何 PyTorch 模块一样:

import torchpipeline = pipeline.to("cuda")# 为确保您可以使用相同的图像并对其进行改进,使用 Generator 方法,然后设置一个随机数种子 以确保其 复现性:
generator = torch.Generator("cuda").manual_seed(0)  # 生成图像
image = pipeline(prompt, generator=generator).images[0]
image

  现在,你可以生成一个图像:
在这里插入图片描述

2. 精度

  在 T4 GPU 上,这个过程大概要30秒(如果你的 GPU 比 T4 好,可能会更快,笔者用的V100所以会快一些)。在默认情况下,DiffusionPipeline 使用完整的 float32 精度进行 50 步推理。你可以通过降低精度(如 float16 )或者减少推理步数来加速整个过程

  让我们把模型的精度降低至 float16 ,提升速度是比较明显的,然后生成一张图像:

import torch# 实例化对象
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, use_safetensors=True)
pipeline = pipeline.to("cuda")# 生成随机种子 
generator = torch.Generator("cuda").manual_seed(0)
image = pipeline(prompt, generator=generator).images[0]
image      

在这里插入图片描述

3. 推理步数

  推理步数的调整会涉及到调度器,因为有的调度器可能4步就搞定了,有的调度器可能20步在可以。
  你可以选择一个更高效的调度器 (scheduler) 可以减少推理步数同时保证输出质量。您可以在 [DiffusionPipeline] 中通过调用compatibles方法找到与当前模型兼容的调度器 (scheduler)。

pipeline.scheduler.compatibles
[diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler,diffusers.schedulers.scheduling_unipc_multistep.UniPCMultistepScheduler,diffusers.schedulers.scheduling_k_dpm_2_discrete.KDPM2DiscreteScheduler,diffusers.schedulers.scheduling_deis_multistep.DEISMultistepScheduler,diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler,diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler,diffusers.schedulers.scheduling_ddpm.DDPMScheduler,diffusers.schedulers.scheduling_dpmsolver_singlestep.DPMSolverSinglestepScheduler,diffusers.schedulers.scheduling_k_dpm_2_ancestral_discrete.KDPM2AncestralDiscreteScheduler,diffusers.schedulers.scheduling_heun_discrete.HeunDiscreteScheduler,diffusers.schedulers.scheduling_pndm.PNDMScheduler,diffusers.schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteScheduler,diffusers.schedulers.scheduling_ddim.DDIMScheduler,
]

  Stable Diffusion 模型默认使用的是 PNDMScheduler ,通常要大概50步推理, 但是像 DPMSolverMultistepScheduler 这样更高效的调度器只要大概 20 或 25 步推理. 使用 ConfigMixin.from_config() 方法加载新的调度器:

from diffusers import DPMSolverMultistepSchedulerpipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)  

  现在将 num_inference_steps 设置为 20:

generator = torch.Generator("cuda").manual_seed(0)
image = pipeline(prompt, generator=generator, num_inference_steps=20).images[0]
image  

在这里插入图片描述

  太棒了!你成功把推理时间缩短到 4 秒(官方4秒,我的更快)!

3. 内存

  改善 pipeline 性能的另一个关键是减少内存的使用量,这间接意味着速度更快,因为你经常试图最大化每秒生成的图像数量。要想知道你一次可以生成多少张图片,最简单的方法是尝试不同的batch size,直到出现Out Of Memory Error (OOM)。

  创建一个函数,为每一批要生成的图像分配提示词和 Generators 。请务必为每个Generator 分配一个种子,以便于复现良好的结果。

def get_inputs(batch_size=1):generator = [torch.Generator("cuda").manual_seed(i) for i in range(batch_size)]prompts = batch_size * [prompt]num_inference_steps = 20return {"prompt": prompts, "generator": generator, "num_inference_steps": num_inference_steps}     

  设置 batch_size=4 ,然后看一看我们消耗了多少内存:

from diffusers.utils import make_image_grid images = pipeline(**get_inputs(batch_size=4)).images
make_image_grid(images, 2, 2)

  除非你有一个更大内存的GPU, 否则上述代码会返回 OOM 错误! 大部分内存被 cross-attention 层使用。按顺序运行可以节省大量内存,而不是在批处理中进行。你可以为 pipeline 配置 enable_attention_slicing() 函数:

pipeline.enable_attention_slicing()

  现在尝试把 batch_size 增加到 8

images = pipeline(**get_inputs(batch_size=8)).images
make_image_grid(images, rows=2, cols=4)

  以前你不能一批生成 4 张图片,而现在你可以在一张图片里面生成八张图片而只需要大概3.5秒!这可能是 T4 GPU 在不牺牲质量的情况运行速度最快的一种方法。
在这里插入图片描述

4. 管道组件

随着diffusers库的更新,管道组件也随着丰富,相继推出了一些高效的出图组件,下面介绍一些新的组件

from diffusers import AutoencoderKLvae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to("cuda")
pipeline.vae = vae
images = pipeline(**get_inputs(batch_size=8)).images
image_grid(images, rows=2, cols=4)

在这里插入图片描述

提质的几个条件

1. 模型

  稳定扩散模型是一个很好的开始,自正式发布以来,还发布了几个改进版本。然而,使用更新的版本并不意味着你会得到更好的结果。你仍然需要自己尝试不同的模型,并做一些研究。例如想生成的图形是二次元、真人、场景、科幻、3D风格等等,根据自己想要的风格去选择合适的模型事半功倍。可以去hugging face 和 civital 网站上去找,里面有很多图像和模型,可以选择。
在这里插入图片描述

  另外,Lora的使用也是可以提升质量的,但他需要训练,也属于模型,所以也放在这里。

2. prompt

  prompt的写法是有讲究的。它属于一个比较庞大的模块。需要花一些时间去学习一下,这里只是简单点一下。推荐去 civital 网站上去看看,网站上的图片有对应的详细参数,其中包括prompt。
  我理解的是prompt 主要包括3个部分:主体、场景、修饰
  主体和场景是根据实际描述,穿插介绍的,修饰词一般放在最后。
在这里插入图片描述
  另外还有一些 起到强调作用的写法, 比如:(被强调词:1.5)。给个例子:
Prompt

masterpiece,professional macro photography, small sprouting  Clover  plant  (symbol of hope, love and faith) in the war zone field,chaotic background, fire,war,  soft bounced lighting, amazing depth of field, shot from a low angle, shot on Lumix GH5 (cinematic bokeh, dynamic range, vibrant colors)

Negative prompt

anime, cartoon, deformed, glitch, noisy, low contrast

在这里插入图片描述

这篇关于【Diffusers库】第二篇 快速生成图片的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/787989

相关文章

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

hdu 1102 uva 10397(最小生成树prim)

hdu 1102: 题意: 给一个邻接矩阵,给一些村庄间已经修的路,问最小生成树。 解析: 把已经修的路的权值改为0,套个prim()。 注意prim 最外层循坏为n-1。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstri

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系