【数字信号去噪】基于matlab小波模极大值数字信号去躁【含Matlab源码 2602期】

2024-03-08 17:40

本文主要是介绍【数字信号去噪】基于matlab小波模极大值数字信号去躁【含Matlab源码 2602期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、小波阈值法去噪概述

电能质量扰动信号的噪声大多以高斯白噪声的形式存在,利用小波变换对信号进行多分辨率分解,由于小波变换具有去除数据相关性的特点,故可以将有用信号与噪声的能量分离开来。信号中有效的信息主要集中在较大的小波系数上,而噪声大多分布在较小的系数中,因此通过设置阈值可以将低于该阈值的系数当做噪声去除从而达到滤波的目的。

假设一个线性非平稳并含噪的一维信号表达式如下:
在这里插入图片描述
其中,f(t)为原始信号,ε(t)为高斯白噪声,x(t)为含噪信号。接着根据该信号的特点,采用合适的小波基和分解层数,对x(t)进行一维离散小波变换:
在这里插入图片描述
其中,ψ(t)为离散小波尺度函数。式(2)对应的小波系数表达式为:
在这里插入图片描述
其中,dj,k为含噪信号x(t)经过小波变换多尺度分解后的各层小波细节系数,uj,k与ej,k分别为原始信号f(t)和噪声信号ε(t)经过小波变换多尺度分解后的细节系数。基于小波阈值去噪的流程图如图1所示。
在这里插入图片描述
图1 小波去噪流程
小波阈值去噪的具体步骤如下:

(1)多尺度分解:根据含噪信号的特点选择适合的小波基和分解层数,经过离散小波变换得到各层的小波细节系数dj,k;

(2)阈值去噪:通过确定阈值λ和阈值函数对小波细节系数dj,k进行处理,得到处理后的各层小波细节系数d’j,k;

(3)小波重构:依据得到的小波细节系数d’j,k和近似系数对电能质量扰动信号进行重构,得到去噪后的扰动信号x’(t)。

这些步骤中,阈值和阈值函数的选择是小波阈值去噪的关键,直接影响着重构信号的质量。如果选择的阈值过大,则会导致有用的信号被当做噪声滤除;阈值过小,则导致噪声的滤除不够彻底。传统的硬、软阈值函数如下所示:
在这里插入图片描述
软阈值函数的定义:
在这里插入图片描述
式中sign(dj,k)为符号函数,,N为信号长度;σ=Mmid/0.6745,Mmid是最低层小波系数的中位数。根据硬、软阈值函数可以看出,对含噪信号进行小波多尺度分解后,将每一层的细节系数与阈值相比较,保留大于阈值的系数,将小于阈值的系数置零,由此得到去除噪声后的细节系数。但是,硬阈值函数在信号长度内不是连续的,在λ处存在间断点,使得重构的信号不够平滑,重构信号后会产生“吉布斯”现象。软阈值函数虽然保证了连续性的问题,但是其噪声估计值与真实值存在着固定的偏差,不仅容易造成噪声去除不够彻底,还可能会丢失部分有用的信息。

2 小波阈值去噪的改进方法
通过上一节对硬、软阈值的分析可知,传统小波阈值去噪方法对于各层的小波系数阈值的设置是恒定不变的,但是噪声在各层小波系数中都是不太相同的,因此采用固定的阈值其自适应性较差,去噪效果不太理想。为了解决上述的这些问题,提出了一种改进的小波阈值去噪算法,它会根据噪声的分布情况自适应的修正阈值,并且其阈值函数通过可变参数可以实现多种不同的软硬特征,使其更加适用于多种不同类型的电能质量扰动信号。

2.1 阈值的修正
阈值作为区分有效信息与噪声的边界,它的选择直接影响着去噪效果。传统的通用阈值对每个尺度的小波细节系数都做了同样的处理,但是噪声的分布具有随机性,用一个固定的阈值进行处理会使得有些尺度上的有用信息丢失,而有些尺度上的噪声滤除的不够干净,这样就无法达到较好的去噪效果。考虑到噪声的小波细节系数随尺度的增加而减小,而信号的小波细节系数随尺度的增加而增大。因此为了使阈值的取值更加符合噪声的变化规律,本章结合了文献[7]中的峰和比(peak-to-sum ratio,PSR),提出了基于PSR的修正因子,对通用阈值进行修正,第j层小波细节系数的峰和比公式如下:
在这里插入图片描述
式中,dj,k是小波细节系数。在小波的多尺度分解中,信号的有用信息主要集中在较大的小波细节系数上,而噪声成分则分散在各层的小波细节系数中。因此,当Sj值较大时,意味着这一尺度存在着较大的系数,说明了该层包含的有用信息较多;而Sj值较小时,则意味者这一尺度存在着较小的系数,说明了该层包含的噪声较多。基于这一特点,则引入修正因子Fj为:
在这里插入图片描述
式中,Lj为第j层小波细节系数的长度。将Fj与ln(j+1)相结合来对阈值进行自适应调节。经过修正后的阈值为:
在这里插入图片描述
由式(8)可知,ln(j+1)随着j的增加逐渐增大,相应的阈值就逐渐减小,这符合噪声分布的一般规律。

2.2 改进阈值函数
为了克服传统硬阈值函数在阈值处不连续和软阈值函数会造成部分高频信息丢失的问题,提出了一种新的阈值函数如下所示:
在这里插入图片描述
式中sign函数为符号函数。该阈值函数在(-!,+!)内连续,证明如下:
在这里插入图片描述
该函数在λj处连续,同理可得函数在-λj处也是连续的。证明其确实克服了硬阈值函数在阈值处不连续的问题。并且该阈值函数在dj,k→±!时等效于硬阈值函数。证明如下:
在这里插入图片描述
由上式可以看出,随着小波细节系数dj,k的增加,新阈值函数曲线逐渐向硬阈值函数逼近,克服了软阈值函数所存在的恒定偏差的问题。新阈值函数的示意图如图2所示。
在这里插入图片描述
图2 新阈值函数曲线图
2.3 小波基与分解层数
应用小波变换对电能质量扰动信号进行去噪、突变点定位和特征提取时,小波基的选择至关重要,只有选择了合适的小波基,才能准确的对电能质量扰动进行分析。因此,在实际应用中,需要根据所选信号的特征来选择合适的小波基。

小波变换的实质是用一系列的小波函数去逼近原始信号的过程,对于同一个信号,选取不同的小波基,其小波变换后的结果也是不同的。对电能质量信号进行小波变换分析,根据其波形的特点,需要采用时域和频域同时具有良好的局部性,且对不规则的部分比较敏感的小波。通常利用传统的软、硬阈值函数来考察小波变换对信号去噪效果的影响。为了验证去噪效果,通常采用信噪比(Signal Noise Ratio,SNR)和均方根误差(Root Mean Square Error,RMSE)作为评价标准。其定义表达式如下所示:
在这里插入图片描述
当信噪比(SNR)越高,均方根误差(RMSE)越低时,就证明了该信号的去噪效果越好。这里选择电压中断扰动信号作为原始数据,通过将不同类型的小波基函数与软、硬阈值函数相结合来进行小波阈值去噪。

⛄二、部分源代码

N=1024;n1=7;
n=0:N-1;
Fs=500;
t=n/Fs;
x=1sin(2pi10t);
y=1.4rand(1,1024);
for i=1:length(y)
if y(1,i)>0.96
y(i)=4;
else if y(1,i)>0.92
y(1,i)=2;
else
y(1,i)=0;
end
end
end
a=0;
for i=1:length(y)
if y(1,i)>0
a=a+1;
else a=a;
end
end
a
signal=x+y;
xref=x;
points=1024; level=4; sr=360; num_inter=6; wf=‘db3’;
%所处理数据的长度 分解的级数 抽样率 迭代次数 小波名称
offset=0;
%____进行二进制小波变换(离散平稳小波变换),并给出各级波形:
[Lo_D,Hi_D,Lo_R,Hi_R]=wfilters(wf);
[swa,swd] = swt(signal,level,Lo_D,Hi_D);
figure;
subplot(level,1,1); plot(real(signal));
title(‘含噪声信号’),grid on;axis tight;
for i=1:level
subplot(level+1,2,2
(i)+1);
plot(swa(i,:)); axis tight;grid on;xlabel(‘time’);
ylabel(strcat('a ',num2str(i)));
subplot(level+1,2,2*(i)+2);
plot(swd(i,:)); axis tight;grid on;
ylabel(strcat('d ',num2str(i)));
end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]郑炜.基于改进小波阈值的电能质量扰动信号去噪算法[J].电气开关. 2021,59(01)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【数字信号去噪】基于matlab小波模极大值数字信号去躁【含Matlab源码 2602期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/787884

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除

matlab读取NC文件(含group)

matlab读取NC文件(含group): NC文件数据结构: 代码: % 打开 NetCDF 文件filename = 'your_file.nc'; % 替换为你的文件名% 使用 netcdf.open 函数打开文件ncid = netcdf.open(filename, 'NC_NOWRITE');% 查看文件中的组% 假设我们想读取名为 "group1" 的组groupName

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87