密集立体匹配20年论文整理

2024-03-08 11:59

本文主要是介绍密集立体匹配20年论文整理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://blog.csdn.net/xuyuhua1985/article/details/26283389

 

1994

Kanade T, Okutomi M. A stereo matching algorithm with an adaptive window: Theory and experiment[J]. TPAMI, 1994, 16(9): 920-932.

被引用次数:1204

1995

Luo A, Burkhardt H. An intensity-based cooperative bidirectional stereo matching with simultaneous detection of discontinuities and occlusions[J]. IJCV, 1995, 15(3): 171-188.

被引用次数:68
1996

Koschan A, Rodehorst V, Spiller K. Color stereo vision using hierarchical block matching and active color illumination[C]// ICPR, 1996, 1: 835-839.

被引用次数:67
1997

1998

Pritchett P, Zisserman A. Wide baseline stereo matching[C]//Computer Vision, 1998. Sixth International Conference on. IEEE, 1998: 754-760.

被引用次数:309
Scharstein D, Szeliski R. Stereo matching with nonlinear diffusion[J]. International Journal of Computer Vision, 1998, 28(2): 155-174.

被引用次数:309
2000

Zitnick C L, Kanade T. A cooperative algorithm for stereo matching and occlusion detection[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2000, 22(7): 675-684.

被引用次数:519
Tuytelaars T, Van Gool L J. Wide Baseline Stereo Matching based on Local, Affinely Invariant Regions[C]//BMVC. 2000, 412.

被引用次数:519
2001

Kang S B, Szeliski R, Chai J. Handling occlusions in dense multi-view stereo[C]//Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. IEEE, 2001, 1: I-103-I-110 vol. 1.

被引用次数:277
2002

Sun J, Shum H Y, Zheng N N. Stereo matching using belief propagation[M]//Computer Vision—ECCV 2002. Springer Berlin Heidelberg, 2002: 510-524.

被引用次数:171

Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International journal of computer vision, 2002, 47(1-3): 7-42.

被引用次数:4456
2003

Sun J, Zheng N N, Shum H Y. Stereo matching using belief propagation[J]. TPAMI, 2003, 25(7): 787-800.

被引用次数:858
Veksler O. Fast variable window for stereo correspondence using integral images[C]// CVPR 2003, 1: I-556-I-561 vol. 1.

被引用次数:299
2004

Hong L, Chen G. Segment-based stereo matching using graph cuts[C]//Computer Vision and Pattern Recognition, 2004. CVPR 2004. IEEE, 2004, 1: I-74-I-81 Vol. 1.

被引用次数:272
2005

Hirschmuller H. Accurate and efficient stereo processing by semi-global matching and mutual information[C]// CVPR 2005. 2: 807-814.被引用次数:394

经典的Semi-Global方法!

Sun J, Li Y, Kang S B, et al. Symmetric stereo matching for occlusion handling[C]// CVPR 2005. 2: 399-406.

 被引用次数:347

2006

Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[C]//  ICPR 2006, 3: 15-18.

被引用次数:595

这篇论文很厉害,在middleburry2.0上一直占据前10名。

Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search[J]. IEEE TPAMI, 2006, 28(4): 650-656. 

被引用次数:595

首此采用双边滤波器做立体匹配。从此以后,引起了很多的自适应权重滤波方法。
2007

Hirschmuller H, Scharstein D. Evaluation of cost functions for stereo matching[C]// CVPR 2007: 1-8.

被引用次数:354

Gong M, Yang R, Wang L, et al. A performance study on different cost aggregation approaches used in real-time stereo matching[J]. IJCV, 2007, 75(2): 283-296.

被引用次数:139
Gehrig S K, Franke U. Improving stereo sub-pixel accuracy for long range stereo[C]//Computer Vision, 2007. ICCV 2007: 1-7.

被引用次数:38
Mattoccia S, Tombari F, Di Stefano L. Stereo vision enabling precise border localization within a scanline optimization framework[M]// ACCV 2007. : 517-527.

被引用次数:32
Goesele M, Snavely N, Curless B, et al. Multi-view stereo for community photo collections[C]//  ICCV 2007: 1-8.

被引用次数:301
Hernández C, Vogiatzis G, Cipolla R. Probabilistic visibility for multi-view stereo[C]// CVPR 2007.: 1-8.

2008

Wang Z F, Zheng Z G. A region based stereo matching algorithm using cooperative optimization[C]// CVPR 2008: 1-8.

被引用次数:213
Xu L, Jia J. Stereo matching: An outlier confidence approach[M]// ECCV 2008: 775-787.被引用次数:36
Min D, Sohn K. Cost aggregation and occlusion handling with WLS in stereo matching[J]. Image Processing, IEEE Transactions on, 2008, 17(8): 1431-1442.
Pollefeys M, Nistér D, Frahm J M, et al. Detailed real-time urban 3d reconstruction from video[J]. IJCV, 2008, 78(2-3): 143-167.

被引用次数:361
Bradley D, Boubekeur T, Heidrich W. Accurate multi-view reconstruction using robust binocular stereo and surface meshing[C]//CVPR 2008. : 1-8.
2009

Yang Q, Wang L, Yang R, et al. Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling[J]. TPAMI, 2009, 31(3): 492-504.

被引用次数:406
Zhang G, Jia J, Wong T T, et al. Consistent depth maps recovery from a video sequence[J]. TPAMI, 2009, 31(6): 974-988.

被引用次数:140
Hiep V H, Keriven R, Labatut P, et al. Towards high-resolution large-scale multi-view stereo[C]// CVPR 2009.: 1430-1437.


Sinha S N, Steedly D, Szeliski R. Piecewise planar stereo for image-based rendering[C]//ICCV. 2009: 1881-1888.


2010

Yang Q, Wang L, Ahuja N. A constant-space belief propagation algorithm for stereo matching[C]// CVPR, 2010 IEEE Conference on. IEEE, 2010: 1458-1465.

Frahm J M, Fite-Georgel P, Gallup D, et al. Building Rome on a cloudless day[M]// ECCV 2010: 368-381.
Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis[J]. TPAMI 2010, 32(8): 1362-1376.
Beeler T, Bickel B, Beardsley P, et al. High-quality single-shot capture of facial geometry[J]. ACM Transactions on Graphics (TOG), 2010, 29(4): 40.

2011

Geiger A, Roser M, Urtasun R. Efficient large-scale stereo matching[M]// ACCV 2010: 25-38.

被引用次数:144

Mei X, Sun X, Zhou M, et al. On building an accurate stereo matching system on graphics hardware[C]// ICCV Workshops, 2011: 467-474.

被引用次数:112
2012

Yang Q. A non-local cost aggregation method for stereo matching[C]// CVPR 2012: 1402-1409.

被引用次数:44
2013

Ma Z, He K, Wei Y, et al. Constant Time Weighted Median Filtering for Stereo Matching and Beyond[C]. ICCV 2013.

Hosni A, Rhemann C, Bleyer M, et al. Fast cost-volume filtering for visual correspondence and beyond[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2013, 35(2): 504-511.
2014

Kang Zhang et al. Cross-Scale Cost Aggregation for Stereo Matching. CVPR 2014.
Tatsunori Taniai et al. Graph Cut based Continuous Stereo Matching using Locally Shared Labels. CVPR 2014.

2015

Leveraging Stereo Matching With Learning-Based Confidence Measures.
Min-Gyu Park, Kuk-Jin Yoon. CVPR 2015

Event-Driven Stereo Matching for Real-Time 3D Panoramic Vision.
Stephan Schraml, Ahmed Nabil Belbachir, Horst Bischof. CVPR 2015

Efficient Minimal-Surface Regularization of Perspective Depth Maps in Variational Stereo.
Gottfried Graber, Jonathan Balzer, Stefano Soatto, Thomas Pock. CVPR 2015

Computing the Stereo Matching Cost With a Convolutional Neural Network.

Jure ?bontar, Yann LeCun. CVPR 2015

第1篇用深度学习做立体匹配的论文。用CNN计算Cost。

Exact Bias Correction and Covariance Estimation for Stereo Vision.
Charles Freundlich, Michael Zavlanos, Philippos Mordohai. CVPR 2015

 2016

PMSC: PatchMatch-based superpixel cut for accurate stereo matching[J]. 

Li L, Zhang S, Yu X, et al. 

IEEE Transactions on Circuits and Systems for Video Technology, 2016.

从2016年开始,基于深度学习的视差估计方法越来越多了。

Mayer N, Ilg E, Hausser P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 4040-4048.

这篇论文用合成的数据集来训练端到端的视差估计网络。

2017 

GC-Net

Kendall A, Martirosyan H, Dasgupta S, et al. End-to-end learning of geometry and context for deep stereo regression[J]. CoRR, vol. abs/1703.04309, 2017.

2018

Khamis S, Fanello S, Rhemann C, et al. Stereonet: Guided hierarchical refinement for real-time edge-aware depth prediction[C]//Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany. 2018: 8-14.

(号称60fps)

2018

iResNet

Liang Z, Feng Y, Guo Y, et al. Learning for disparity estimation through feature constancy[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 2811-2820.

2019

GA-Net

Zhang F, Prisacariu V, Yang R, et al. GA-Net: Guided Aggregation Net for End-to-end Stereo Matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 185-194.

Zhang F, Qi X, Yang R, et al. Domain-invariant Stereo Matching Networks[J]. arXiv preprint arXiv:1911.13287, 2019.

Duggal S, Wang S, Ma W C, et al. Deeppruner: Learning efficient stereo matching via differentiable patchmatch[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 4384-4393.

2020

AA-Net

Xu H, Zhang J. AANet: Adaptive Aggregation Network for Efficient Stereo Matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1959-1968.

 

这篇关于密集立体匹配20年论文整理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/787020

相关文章

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

【JavaScript】LeetCode:16-20

文章目录 16 无重复字符的最长字串17 找到字符串中所有字母异位词18 和为K的子数组19 滑动窗口最大值20 最小覆盖字串 16 无重复字符的最长字串 滑动窗口 + 哈希表这里用哈希集合Set()实现。左指针i,右指针j,从头遍历数组,若j指针指向的元素不在set中,则加入该元素,否则更新结果res,删除集合中i指针指向的元素,进入下一轮循环。 /*** @param

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

rtmp流媒体编程相关整理2013(crtmpserver,rtmpdump,x264,faac)

转自:http://blog.163.com/zhujiatc@126/blog/static/1834638201392335213119/ 相关资料在线版(不定时更新,其实也不会很多,也许一两个月也不会改) http://www.zhujiatc.esy.es/crtmpserver/index.htm 去年在这进行rtmp相关整理,其实内容早有了,只是整理一下看着方